Present-day heat flow model of Mars

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10045/140305
Información del item - Informació de l'item - Item information
Título: Present-day heat flow model of Mars
Autor/es: Parro, Laura M. | Jiménez-Díaz, Alberto | Mansilla, Federico | Ruiz, Javier
Grupo/s de investigación o GITE: Astronomía y Astrofísica
Centro, Departamento o Servicio: Universidad de Alicante. Instituto Universitario de Física Aplicada a las Ciencias y las Tecnologías
Palabras clave: Mars | Heat flow
Fecha de publicación: 3-abr-2017
Editor: Springer Nature
Cita bibliográfica: Scientific Reports. 2017, 7:45629. https://doi.org/10.1038/srep45629
Resumen: Until the acquisition of in-situ measurements, the study of the present-day heat flow of Mars must rely on indirect methods, mainly based on the relation between the thermal state of the lithosphere and its mechanical strength, or on theoretical models of internal evolution. Here, we present a first-order global model for the present-day surface heat flow for Mars, based on the radiogenic heat production of the crust and mantle, on scaling of heat flow variations arising from crustal thickness and topography variations, and on the heat flow derived from the effective elastic thickness of the lithosphere beneath the North Polar Region. Our preferred model finds heat flows varying between 14 and 25 mW m−2, with an average value of 19 mW m−2. Similar results (although about ten percent higher) are obtained if we use heat flow based on the lithospheric strength of the South Polar Region. Moreover, expressing our results in terms of the Urey ratio (the ratio between total internal heat production and total heat loss through the surface), we estimate values close to 0.7–0.75, which indicates a moderate contribution of secular cooling to the heat flow of Mars (consistent with the low heat flow values deduced from lithosphere strength), unless heat-producing elements abundances for Mars are subchondritic.
Patrocinador/es: The work by L.M.P. was supported by a FPU2014 grant from the Ministerio de Educación, Cultura y Deporte of Spain. The work by J.R. was supported by a contract Ramón y Cajal at the Universidad Complutense de Madrid (UCM). This work has received funding from the European Union’s Horizon 2020 Programme (H2020-Compet-08-2014) under grant agreement UPWARDS-633127, and from the Spanish Ministry of Economy and Competitiveness Project CGL2014-59363-P (AMARTE).
URI: http://hdl.handle.net/10045/140305
ISSN: 2045-2322
DOI: 10.1038/srep45629
Idioma: eng
Tipo: info:eu-repo/semantics/article
Derechos: © The Author(s) 2017. This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
Revisión científica: si
Versión del editor: https://doi.org/10.1038/srep45629
Aparece en las colecciones:Investigaciones financiadas por la UE
INV - Astronomía y Astrofísica - Artículos de Revistas

Archivos en este ítem:
Archivos en este ítem:
Archivo Descripción TamañoFormato 
ThumbnailParro_etal_2017_SciRep.pdf1,22 MBAdobe PDFAbrir Vista previa


Todos los documentos en RUA están protegidos por derechos de autor. Algunos derechos reservados.