Hybrid analytical surrogate-based process optimization via Bayesian symbolic regression

Please use this identifier to cite or link to this item: http://hdl.handle.net/10045/139506
Full metadata record
Full metadata record
DC FieldValueLanguage
dc.contributorComputer Optimization of Chemical Engineering Processes and Technologies (CONCEPT)es_ES
dc.contributor.authorJog, Sachin-
dc.contributor.authorVázquez, Daniel-
dc.contributor.authorSantos, Lucas F.-
dc.contributor.authorCaballero, José A.-
dc.contributor.authorGuillén Gosálbez, Gonzalo-
dc.contributor.otherUniversidad de Alicante. Departamento de Ingeniería Químicaes_ES
dc.contributor.otherUniversidad de Alicante. Instituto Universitario de Ingeniería de los Procesos Químicoses_ES
dc.date.accessioned2024-01-08T10:56:01Z-
dc.date.available2024-01-08T10:56:01Z-
dc.date.issued2023-12-20-
dc.identifier.citationComputers & Chemical Engineering. 2024, 182: 108563. https://doi.org/10.1016/j.compchemeng.2023.108563es_ES
dc.identifier.issn0098-1354 (Print)-
dc.identifier.issn1873-4375 (Online)-
dc.identifier.urihttp://hdl.handle.net/10045/139506-
dc.description.abstractModular chemical process simulators are widespread in chemical industries to design and optimize production processes with sufficient accuracy. However, convergence issues and entrapment in local optima during process optimization are still challenges to overcome. To circumvent them, surrogate models of first principles simulations have attracted attention as they are easier to handle, with hybrid surrogates combining data-driven surrogate models with mechanistic equations becoming particularly appealing. In this context, this work explores the use of Bayesian symbolic regression to construct and globally optimize hybrid analytical surrogate models of process flowsheets, where some units are approximated with tailored analytical expressions rather than with neural networks or Gaussian processes, which are harder to globally optimize. Comparing with other prevalent black-box surrogate modeling & optimization approaches, such as kriging and Bayesian optimization, we find that our approach can find better solutions than using pure black-box methodologies, yet model building is much more computationally demanding.es_ES
dc.description.sponsorshipThe authors would like to acknowledge the financial support from the Swiss National Science Foundation (Project LEARN-D, MINT 200021_214877). JAC also acknowledges the Spanish Ministerio de Ciencia y Innovación for the financial support under project PID2021-124139NB-C21.es_ES
dc.languageenges_ES
dc.publisherElsevieres_ES
dc.rights© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).es_ES
dc.subjectProcess optimizationes_ES
dc.subjectHybrid surrogate modelses_ES
dc.subjectBlack-box surrogate modelses_ES
dc.subjectBayesian symbolic regressiones_ES
dc.titleHybrid analytical surrogate-based process optimization via Bayesian symbolic regressiones_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.peerreviewedsies_ES
dc.identifier.doi10.1016/j.compchemeng.2023.108563-
dc.relation.publisherversionhttps://doi.org/10.1016/j.compchemeng.2023.108563es_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2021-124139NB-C21es_ES
Appears in Collections:INV - CONCEPT - Artículos de Revistas

Files in This Item:
Files in This Item:
File Description SizeFormat 
ThumbnailJog_etal_2024_ComputChemEng.pdf1,47 MBAdobe PDFOpen Preview


Items in RUA are protected by copyright, with all rights reserved, unless otherwise indicated.