Nonperturbative indirect exchange in spin valley coupled two-dimensional crystals

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10045/138003
Información del item - Informació de l'item - Item information
Título: Nonperturbative indirect exchange in spin valley coupled two-dimensional crystals
Autor/es: Losada, María R. | Costa, António T. | Biel, Blanca | Fernández-Rossier, Joaquín
Grupo/s de investigación o GITE: Grupo de Nanofísica
Centro, Departamento o Servicio: Universidad de Alicante. Departamento de Física Aplicada
Palabras clave: Indirect exchange interactions | Spin valley coupled systems | Transition metal dichalcogenides
Fecha de publicación: 12-oct-2023
Editor: American Physical Society
Cita bibliográfica: Physical Review B. 2023, 108: 144408. https://doi.org/10.1103/PhysRevB.108.144408
Resumen: We study indirect exchange interactions between localized spins of magnetic impurities in spin valley coupled systems described with the Kane-Mele model. Our model captures the main ingredients of the energy bands of the 1H transition metal dichalcogenide (TMD) monolayers, such as 1H-MoS2 and 1H-NbSe2. To obtain the effective interactions, we use the exact diagonalization of the Hamiltonian, avoiding momentum cutoffs. We start by comparing the standard perturbation expansion in terms of the Kondo exchange with the exact calculation of the interaction, treating the local spins classically. We find that perturbation theory works well even beyond the regime where the relevant figure of merit, the ratio between the exchange J and the hopping t, is small. We verify that the effective indirect exchange Hamiltonian derived from perturbation theory also works in the nonperturbative regime. Additionally, we analyze the interplay between the symmetry of the different terms of the interaction (Heisenberg, Ising, and Dzyaloshinskii-Moriya), the Fermi-surface topology, and the crystallographic direction in which the impurities are placed. We show that the indirect exchange along the armchair direction is actually Heisenberg-like, due to the reflection symmetry of the crystal structure around this direction. Finally, we explore the exploitation of indirect exchange, combined with atomic manipulation, to engineer the Majumdar-Ghosh model. Our results show that TMDs provide an extremely versatile platform to engineer indirect exchange interactions.
Patrocinador/es: This study forms part of the Advanced Materials programme and was supported by MCIN with funding from European Union NextGenerationEU (PRTR-C17.I1) and by Generalitat Valenciana (MFA/2022/045). We acknowledge Programa Operativo FEDER/Junta de Andalucía—Consejería de Transformación Económica, Industria, Conocimiento, y Universidades (Grant No. P18-FR-4834). The Albaicín supercomputer of the University of Granada is also acknowledged for providing computational time and facilities. B.B. acknowledges financial support from AEI under Project No. PID2021-125604NB-I00. J.F.R. acknowledges financial support from FCT (Grant No. PTDC/FIS-MAC/2045/2021), SNF Sinergia (Grant Pimag), Generalitat Valenciana funding Prometeo 2021/017 and MFA/2022/045, and funding from MICIIN-Spain (Grant No. PID2019-109539GB-C41).
URI: http://hdl.handle.net/10045/138003
ISSN: 2469-9950 (Print) | 2469-9969 (Online)
DOI: 10.1103/PhysRevB.108.144408
Idioma: eng
Tipo: info:eu-repo/semantics/article
Derechos: © 2023 American Physical Society
Revisión científica: si
Versión del editor: https://doi.org/10.1103/PhysRevB.108.144408
Aparece en las colecciones:INV - Grupo de Nanofísica - Artículos de Revistas

Archivos en este ítem:
Archivos en este ítem:
Archivo Descripción TamañoFormato 
ThumbnailLosada_etal_2023_PhysRevB.pdf1,21 MBAdobe PDFAbrir Vista previa


Todos los documentos en RUA están protegidos por derechos de autor. Algunos derechos reservados.