Chemical Limits on X-ray Nanobeam Studies in Water

Please use this identifier to cite or link to this item: http://hdl.handle.net/10045/136325
Información del item - Informació de l'item - Item information
Title: Chemical Limits on X-ray Nanobeam Studies in Water
Authors: Björling, Alexander | Marçal, Lucas A.B. | Arán-Ais, Rosa M. | Solla-Gullón, José
Research Group/s: Electroquímica de Superficies | Electroquímica Aplicada y Electrocatálisis
Center, Department or Service: Universidad de Alicante. Departamento de Química Física | Universidad de Alicante. Instituto Universitario de Electroquímica
Keywords: X-ray nanobeam | Electrochemical | Operando studies | Aqueous systems
Issue Date: 6-Jul-2023
Publisher: American Chemical Society
Citation: The Journal of Physical Chemistry C. 2023, 127(28): 13877-13885. https://doi.org/10.1021/acs.jpcc.3c02432
Abstract: Operando X-ray studies of chemical reactions have gained increasing interest lately, fueled by the emergence of a new generation of powerful focused X-ray sources. Although it is well known that ionizing radiation causes damage to samples via radical chemistry, this effect is often overlooked in studies of working devices or catalysts where intense focused beams are used as nanoscale probes. Here, we show how an X-ray nanobeam directly causes a phase transition in shape-controlled Pd nanoparticles and that a large oxidative potential must be applied to counteract the effect. In addition, we present a chemical reaction–diffusion model that offers a plausible qualitative explanation of the observations, and which also suggests that prohibitive concentrations of reactive species will arise under any focused X-ray probe, calling into question the validity of these methods as applied to aqueous chemical and catalytic systems.
Sponsor: The authors acknowledge MAX IV Laboratory for time on the NanoMAX beamline under Proposal 20200372. Research conducted at MAX IV, a Swedish national user facility, is supported by the Swedish Research Council under Contract 2018-07152, the Swedish Governmental Agency for Innovation Systems under Contract 2018-04969, and Formas under Contract 2019-02496. This work was supported by The Crafoord Foundation via Grant 20210627. R.M.A.-A. acknowledges the financial support from Generalitat Valenciana (CDEIGENT/2019/018).
URI: http://hdl.handle.net/10045/136325
ISSN: 1932-7447 (Print) | 1932-7455 (Online)
DOI: 10.1021/acs.jpcc.3c02432
Language: eng
Type: info:eu-repo/semantics/article
Rights: © 2023 The Authors. Published by American Chemical Society. Creative Commons Attribution 4.0 International (CC BY 4.0)
Peer Review: si
Publisher version: https://doi.org/10.1021/acs.jpcc.3c02432
Appears in Collections:INV - LEQA - Artículos de Revistas
INV - EQSUP - Artículos de Revistas

Files in This Item:
Files in This Item:
File Description SizeFormat 
ThumbnailBjorling_etal_2023_JPhysChemC.pdf1,94 MBAdobe PDFOpen Preview


This item is licensed under a Creative Commons License Creative Commons