Direct Synthesis of Highly Siliceous ZnO-FAU Zeolite with Enhanced Performance in Hydrocarbon Cracking Reactions

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10045/130458
Información del item - Informació de l'item - Item information
Título: Direct Synthesis of Highly Siliceous ZnO-FAU Zeolite with Enhanced Performance in Hydrocarbon Cracking Reactions
Autor/es: Parmar, Deependra | Mallette, Adam J. | Linares, Noemi | Saslow, Sarah A. | Terlier, Tanguy | Strohm, James J. | Barber, Lee P. | Dai, Heng | Garcia-Martinez, Javier | Rimer, Jeffrey D.
Grupo/s de investigación o GITE: Laboratorio de Nanotecnología Molecular (NANOMOL)
Centro, Departamento o Servicio: Universidad de Alicante. Departamento de Química Inorgánica
Palabras clave: Zeolite | Catalyst | Hydrothermal stability | Faujasite | Zinc oxide
Fecha de publicación: 14-dic-2022
Editor: American Chemical Society
Cita bibliográfica: ACS Materials Letters. 2023, 5: 202-208. https://doi.org/10.1021/acsmaterialslett.2c00978
Resumen: The hydrothermal stability and catalytic activity of zeolite Y (faujasite, FAU) is highly dependent on its composition. High silicon content is often desirable for catalytic applications; however, direct synthesis of faujasite with high silicon content (Si/Al > 2.5) is nontrivial. Here, we present an organic-free synthesis of FAU-type zeolite with Si/Al = 3.4 using zinc oxide as a modifier. A combination of spectroscopy and microscopy techniques confirms that ZnO is well-distributed within zeolite pores as extra-framework species, and the nature of these species differs from bulk ZnO and framework zinc in Zn-FAU crystals. We demonstrate that the increased Si/Al ratio leads to improved hydrothermal stability, while catalytic cracking of 1-hexene and cumene show that ZnO-FAU exhibits a significantly longer lifetime compared to in-house and commercial zeolite Y. Collectively, this study presents a facile and efficient method to prepare more siliceous FAU with enhanced catalytic performance.
Patrocinador/es: J.D.R. received funding primary from the National Science Foundation (Award DMR-2005201) and additional support from The Welch Foundation (Award E-1794). We also wish to thank Albemarle Corporation for their support of this work. J.G.M. and N.L. received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No. 872102 and the Spanish MINECO and AEI/FEDER, UE, through Project ref. RTI2018-099504-B-C21. N.L. also acknowledges the University of Alicante support (UATALENTO17-05). ToF-SIMS analysis was carried out with support provided by the National Science Foundation (Award CBET-1626418). This work was conducted in part using resources of the Shared Equipment Authority at Rice University. This research used resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science user facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. The authors thank Mahalingam Balasubramanian from APS Sector 20 (now at Oak Ridge National Laboratory) for collecting the EXAFS dataset.
URI: http://hdl.handle.net/10045/130458
ISSN: 2639-4979
DOI: 10.1021/acsmaterialslett.2c00978
Idioma: eng
Tipo: info:eu-repo/semantics/article
Derechos: © 2022 American Chemical Society
Revisión científica: si
Versión del editor: https://doi.org/10.1021/acsmaterialslett.2c00978
Aparece en las colecciones:INV - NANOMOL - Artículos de Revistas
Investigaciones financiadas por la UE

Archivos en este ítem:
Archivos en este ítem:
Archivo Descripción TamañoFormato 
ThumbnailParmar_etal_2023_ACSMaterialsLett_revised.pdfVersión revisada (acceso abierto)883,77 kBAdobe PDFAbrir Vista previa
ThumbnailParmar_etal_2023_ACSMaterialsLett_final.pdfVersión final (acceso restringido)3,95 MBAdobe PDFAbrir    Solicitar una copia


Todos los documentos en RUA están protegidos por derechos de autor. Algunos derechos reservados.