Totally Spin-Polarized Currents in an Interferometer with Spin–Orbit Coupling and the Absence of Magnetic Field Effects

Empreu sempre aquest identificador per citar o enllaçar aquest ítem http://hdl.handle.net/10045/130000
Información del item - Informació de l'item - Item information
Títol: Totally Spin-Polarized Currents in an Interferometer with Spin–Orbit Coupling and the Absence of Magnetic Field Effects
Autors: Lopes, Victor | Chiappe, Guillermo | Ribeiro, Laercio Costa | Anda, Enrique V.
Grups d'investigació o GITE: Física de la Materia Condensada
Centre, Departament o Servei: Universidad de Alicante. Departamento de Física Aplicada
Paraules clau: Spin–orbit coupling | Spintronics | Interferometer | Functional nano-heterostructures | One-dimensional nanostructures | Semiconductor nanowires | Spin-polarized current
Data de publicació: 20-de novembre-2022
Editor: MDPI
Citació bibliogràfica: Lopes V, Chiappe G, Ribeiro LC, Anda EV. Totally Spin-Polarized Currents in an Interferometer with Spin–Orbit Coupling and the Absence of Magnetic Field Effects. Nanomaterials. 2022; 12(22):4082. https://doi.org/10.3390/nano12224082
Resum: The paper studies the electronic current in a one-dimensional lead under the effect of spin–orbit coupling and its injection into a metallic conductor through two contacts, forming a closed loop. When an external potential is applied, the time reversal symmetry is broken and the wave vector k of the circulating electrons that contribute to the current is spin-dependent. As the wave function phase depends upon the vector k, the closed path in the circuit produces spin-dependent current interference. This creates a physical scenario in which a spin-polarized current emerges, even in the absence of external magnetic fields or magnetic materials. It is possible to find points in the system’s parameter space and, depending upon its geometry, the value of the Fermi energy and the spin–orbit intensities, for which the electronic states participating in the current have only one spin, creating a high and totally spin-polarized conductance. For a potential of a few tens of meV, it is possible to obtain a spin-polarized current of the order of μA. The properties of the obtained electronic current qualify the proposed device as a potentially important tool for spintronics applications.
Patrocinadors: V.L. and G.C. acknowledge financial support from the Generalitat Valenciana through grants references Prometeo/2021/017 and MFA/2022/045. V.L. acknowledges financial support from the Spanish Ministerio de Ciencia e Innovación, PID2019-109539GB. G.C. acknowledges financial support from the Spanish Ministry of Education and Science, PID2019-109539GB-C41 and PID2019-106114GB-I00. E.V.A. acknowledges financial support from the Brazilian Agency Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), process number 306000/2017-2.
URI: http://hdl.handle.net/10045/130000
ISSN: 2079-4991
DOI: 10.3390/nano12224082
Idioma: eng
Tipus: info:eu-repo/semantics/article
Drets: © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Revisió científica: si
Versió de l'editor: https://doi.org/10.3390/nano12224082
Apareix a la col·lecció: INV - Física de la Materia Condensada - Artículos de Revistas

Arxius per aquest ítem:
Arxius per aquest ítem:
Arxiu Descripció Tamany Format  
ThumbnailLopes_etal_2022_Nanomaterials.pdf530,96 kBAdobe PDFObrir Vista prèvia


Aquest ítem està subjecte a una llicència de Creative Commons Llicència Creative Commons Creative Commons