Molecular Events behind the Selectivity and Inactivation Properties of Model NaK-Derived Ion Channels

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10045/126700
Información del item - Informació de l'item - Item information
Título: Molecular Events behind the Selectivity and Inactivation Properties of Model NaK-Derived Ion Channels
Autor/es: Giudici, A. Marcela | Renart, M. Lourdes | Coutinho, Ana | Morales, Andrés | González-Ros, José M. | Poveda, José A.
Grupo/s de investigación o GITE: Fisiología de Membranas
Centro, Departamento o Servicio: Universidad de Alicante. Departamento de Fisiología, Genética y Microbiología
Palabras clave: Potassium channels | Selectivity | Inactivation | Conformational flexibility | Ion binding | Thermal stability | Homo-FRET | Anisotropy decays | Time-resolved and steady-state anisotropy
Fecha de publicación: 17-ago-2022
Editor: MDPI
Cita bibliográfica: Giudici AM, Renart ML, Coutinho A, Morales A, González-Ros JM, Poveda JA. Molecular Events behind the Selectivity and Inactivation Properties of Model NaK-Derived Ion Channels. International Journal of Molecular Sciences. 2022; 23(16):9246. https://doi.org/10.3390/ijms23169246
Resumen: Y55W mutants of non-selective NaK and partly K+-selective NaK2K channels have been used to explore the conformational dynamics at the pore region of these channels as they interact with either Na+ or K+. A major conclusion is that these channels exhibit a remarkable pore conformational flexibility. Homo-FRET measurements reveal a large change in W55–W55 intersubunit distances, enabling the selectivity filter (SF) to admit different species, thus, favoring poor or no selectivity. Depending on the cation, these channels exhibit wide-open conformations of the SF in Na+, or tight induced-fit conformations in K+, most favored in the four binding sites containing NaK2K channels. Such conformational flexibility seems to arise from an altered pattern of restricting interactions between the SF and the protein scaffold behind it. Additionally, binding experiments provide clues to explain such poor selectivity. Compared to the K+-selective KcsA channel, these channels lack a high affinity K+ binding component and do not collapse in Na+. Thus, they cannot properly select K+ over competing cations, nor reject Na+ by collapsing, as K+-selective channels do. Finally, these channels do not show C-type inactivation, likely because their submillimolar K+ binding affinities prevent an efficient K+ loss from their SF, thus favoring permanently open channel states.
Patrocinador/es: This work was partly supported by grants PGC2018-093505-B-I00 from the Spanish “Ministerio de Ciencia e Innovación”/FEDER, UE, and FCT-Fundação para a Ciência e a Tecnologia, I.P., under the scope of the project UIDB/04565/2020 and UIDP/04565/2020 of the Research Unit Institute for Bioengineering and Biosciences—iBB and the project LA/P/0140/2020 of the Associate Laboratory Institute for Health and Bioeconomy—i4HB.
URI: http://hdl.handle.net/10045/126700
ISSN: 1422-0067
DOI: 10.3390/ijms23169246
Idioma: eng
Tipo: info:eu-repo/semantics/article
Derechos: © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Revisión científica: si
Versión del editor: https://doi.org/10.3390/ijms23169246
Aparece en las colecciones:INV - Fisiología de Membranas - Artículos de Revistas

Archivos en este ítem:
Archivos en este ítem:
Archivo Descripción TamañoFormato 
ThumbnailGiudici_etal_2022_IntJMolSci.pdf11,9 MBAdobe PDFAbrir Vista previa


Este ítem está licenciado bajo Licencia Creative Commons Creative Commons