Spin-lattice dynamics simulation of the Einstein–de Haas effect

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10045/122685
Información del item - Informació de l'item - Item information
Título: Spin-lattice dynamics simulation of the Einstein–de Haas effect
Autor/es: Dednam, Wynand | Sabater, Carlos | Botha, André Erasmus | Lombardi, Enrico B. | Fernández-Rossier, Joaquín | Caturla, Maria J.
Grupo/s de investigación o GITE: Grupo de Nanofísica | Física de la Materia Condensada
Centro, Departamento o Servicio: Universidad de Alicante. Departamento de Física Aplicada
Palabras clave: Spin-lattice dynamics | Molecular dynamics simulations | Magnetic anisotropy | Conservation of total angular momentum | Angular momentum exchange | Einstein–de Haas effect
Área/s de conocimiento: Física Aplicada | Física de la Materia Condensada
Fecha de publicación: 1-abr-2022
Editor: Elsevier
Cita bibliográfica: Computational Materials Science. 2022, 209: 111359. https://doi.org/10.1016/j.commatsci.2022.111359
Resumen: The spin and lattice dynamics of a ferromagnetic nanoparticle are studied via molecular dynamics and with semi-classical spin dynamics simulations where spin and lattice degrees of freedom are coupled via a dynamic uniaxial anisotropy term. We show that this model conserves total angular momentum, whereas spin and lattice angular momentum are not conserved. We carry out simulations of the Einstein–de Haas effect for a Fe nanocluster with more than 500 atoms that is free to rotate, using a modified version of the open-source spin-lattice dynamics code (SPILADY). We show that the rate of angular momentum transfer between spin and lattice is proportional to the strength of the magnetic anisotropy interaction. The addition of the anisotropy allows full spin-lattice relaxation to be achieved on previously reported timescales of ∼ 100 ps and for tight-binding magnetic anisotropy energies comparable to those of small Fe nanoclusters.
Patrocinador/es: We acknowledge financial support from the Ministry of Science and Innovation of Spain (grant No. PID2019-109539GB-4). This work was supported by the Generalitat Valenciana, Spain through PROMETEO2017/139 and PROMETEO/2021/017. C. S. gratefully acknowledges financial supports from Generalitat Valenciana with (CDEIGENT2018/028). JFR acknowledges funding from FCT, Portugal grant PTDC/FIS-MAC/2045/2021. The SLD calculations in this paper were performed on the high-performance computing facilities of the University of South Africa.
URI: http://hdl.handle.net/10045/122685
ISSN: 0927-0256 (Print) | 1879-0801 (Online)
DOI: 10.1016/j.commatsci.2022.111359
Idioma: eng
Tipo: info:eu-repo/semantics/article
Derechos: © 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Revisión científica: si
Versión del editor: https://doi.org/10.1016/j.commatsci.2022.111359
Aparece en las colecciones:INV - Grupo de Nanofísica - Artículos de Revistas
INV - Física de la Materia Condensada - Artículos de Revistas

Archivos en este ítem:
Archivos en este ítem:
Archivo Descripción TamañoFormato 
ThumbnailDednam_etal_2022_ComputMatSci.pdf1,32 MBAdobe PDFAbrir Vista previa


Este ítem está licenciado bajo Licencia Creative Commons Creative Commons