Efficient Electrochemical Nitrate Reduction to Ammonia with Copper Supported Rhodium Cluster and Single-Atom Catalysts

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10045/122287
Información del item - Informació de l'item - Item information
Título: Efficient Electrochemical Nitrate Reduction to Ammonia with Copper Supported Rhodium Cluster and Single-Atom Catalysts
Autor/es: Liu, Huimin | Lang, Xiuyao | Zhu, Chao | Timoshenko, Janis | Rüscher, Martina | Bai, Lichen | Guijarro, Nestor | Yin, Haibo | Peng, Yue | Li, Junhua | Liu, Zheng | Wang, Weichao | Roldan Cuenya, Beatriz | Luo, Jingshan
Grupo/s de investigación o GITE: Grupo de Fotoquímica y Electroquímica de Semiconductores (GFES)
Centro, Departamento o Servicio: Universidad de Alicante. Instituto Universitario de Electroquímica
Palabras clave: Electrochemical nitrate reduction | Ammonia synthesis | Rhodium cluster and single atom | Copper nanowire | Hydrogen transfer mechanism
Área/s de conocimiento: Química Física
Fecha de publicación: 17-mar-2022
Editor: Wiley-VCH GmbH
Cita bibliográfica: Angewandte Chemie International Edition. 2022, 61(23): e202202556. https://doi.org/10.1002/anie.202202556
Resumen: The electrochemical nitrate reduction reaction (NITRR) provides a promising solution for restoring the imbalance in the global nitrogen cycle while enabling a sustainable and decentralized route to source ammonia. Here, we demonstrate a novel electrocatalyst for NITRR consisting of Rh clusters and single-atoms dispersed onto Cu nanowires (NWs), which delivers a partial current density of 162 mA cm−2 for NH3 production and a Faradaic efficiency (FE) of 93% at −0.2 V vs. RHE. The highest ammonia yield rate reached a record value of 1.27 mmol h−1 cm−2. Detailed investigations by electron spin resonance, in-situ infrared spectroscopy, differential electrochemical mass spectrometry and density functional theory modeling suggest that the high activity originates from the synergistic catalytic cooperation between Rh and Cu sites, whereby adsorbed hydrogen on Rh sites transfer to vicinal *NO intermediate species adsorbed on Cu promoting the hydrogenation and ammonia formation.
Patrocinador/es: This work is supported by the Chinese Thousand Talents Program for Young Professionals, the startup funding from Nankai University, the “111” project (Grant No. B16027), the Spanish Ministry of Science & Innovation for the “Ramon y Cajal” Program (RYC2018-023888-I), and the Singapore Ministry of Education AcRF Tier 2 (2016-T2-2-153, 2016-T2-1-131), AcRF Tier 1 (RG7/18 and RG161/19). L. Bai acknowledges the Early Postdoc Research Fellowship (P2ELP2_199800) from the Swiss National Science Foundation. XAS experiments were performed at CLAESS beamline at ALBA Synchrotron with the collaboration of ALBA staff.
URI: http://hdl.handle.net/10045/122287
ISSN: 1433-7851 (Print) | 1521-3773 (Online)
DOI: 10.1002/anie.202202556
Idioma: eng
Tipo: info:eu-repo/semantics/article
Derechos: © 2022 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Revisión científica: si
Versión del editor: https://doi.org/10.1002/anie.202202556
Aparece en las colecciones:INV - GFES - Artículos de Revistas

Archivos en este ítem:
Archivos en este ítem:
Archivo Descripción TamañoFormato 
ThumbnailLiu_etal_2022_AngewChemIntEd_accepted.pdfAccepted Manuscript (acceso abierto)1,43 MBAdobe PDFAbrir Vista previa
ThumbnailLiu_etal_2022_AngewChemIntEd_final.pdfVersión final (acceso restringido)5,24 MBAdobe PDFAbrir    Solicitar una copia


Todos los documentos en RUA están protegidos por derechos de autor. Algunos derechos reservados.