Effects of vegetation on soil cyanobacterial communities through time and space

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10045/121448
Información del item - Informació de l'item - Item information
Título: Effects of vegetation on soil cyanobacterial communities through time and space
Autor/es: Cano-Díaz, Concha | Maestre, Fernando T. | Wang, Jun‐Tao | Li, Jing | Singh, Brajesh K. | Ochoa, Victoria | Gozalo, Beatriz | Delgado-Baquerizo, Manuel
Centro, Departamento o Servicio: Universidad de Alicante. Departamento de Ecología | Universidad de Alicante. Instituto Multidisciplinar para el Estudio del Medio "Ramón Margalef"
Palabras clave: 16S amplicon sequencing | Abundance | Cyanobacteria | Illumina sequencing | Non-photosynthetic cyanobacteria | Soil chronosequence | Richness
Área/s de conocimiento: Ecología
Fecha de publicación: 27-ene-2022
Editor: Wiley | New Phytologist Foundation
Cita bibliográfica: New Phytologist. 2022, 234(2): 435-448. https://doi.org/10.1111/nph.17996
Resumen: Photoautotrophic soil cyanobacteria play essential ecological roles and are known to experience large changes in their diversity and abundance throughout early succession. However, much less is known about how and why soil cyanobacterial communities change as soil develops from centuries to millennia, and the effects of vegetation on them. We combined an extensive field survey including 16 global soil chronosequences across contrasting ecosystems (from deserts to tropical forests) with molecular analyses to investigate how the diversity and abundance of photosynthetic and non-photosynthetic soil cyanobacteria under vegetation change during soil development from hundreds to thousands of years. We show that, in most chronosequences, the abundance, species richness and community composition of soil cyanobacteria were relatively stable as soil develops (from centuries to millennia). Regardless of soil age, forest chronosequences were consistently dominated by non-photosynthetic cyanobacteria (Vampirovibrionia), while grasslands and shrublands were dominated by photosynthetic cyanobacteria. Chronosequences undergoing drastic vegetation shifts (e.g. transitions from grasslands to forests) experienced significant changes in the composition of soil cyanobacteria communities. Our results advance our understanding of the ecology of cyanobacterial classes, specially the understudied non-photosynthetic ones and highlight the key role of vegetation as a major driver of their temporal dynamics as soil develops.
Patrocinador/es: This project received funding from the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement 702057 (CLIMIFUN), a Large Research Grant from the British Ecological Society (agreement nº LRA17\1193; MUSGONET), and from the European Research Council (ERC grant agreement nº 647038, BIODESERT). M.D-B. is supported by a Ramón y Cajal grant from the Spanish Government (agreement nº RYC2018-025483-I). C.C-D. acknowledges support from BIODESERT. FTM acknowledges support from Generalitat Valenciana (CIDEGENT/2018/041).
URI: http://hdl.handle.net/10045/121448
ISSN: 0028-646X (Print) | 1469-8137 (Online)
DOI: 10.1111/nph.17996
Idioma: eng
Tipo: info:eu-repo/semantics/article
Derechos: © 2022 The Authors. New Phytologist © 2022 New Phytologist Foundation
Revisión científica: si
Versión del editor: https://doi.org/10.1111/nph.17996
Aparece en las colecciones:Personal Investigador sin Adscripción a Grupo
Investigaciones financiadas por la UE
INV - DRYLAB - Artículos de Revistas

Archivos en este ítem:
Archivos en este ítem:
Archivo Descripción TamañoFormato 
ThumbnailCano-Diaz_etal_2022_NewPhytologist_accepted.pdfAccepted Manuscript (acceso abierto)2,03 MBAdobe PDFAbrir Vista previa
ThumbnailCano-Diaz_etal_2022_NewPhytologist_final.pdfVersión final (acceso restringido)2,28 MBAdobe PDFAbrir    Solicitar una copia


Todos los documentos en RUA están protegidos por derechos de autor. Algunos derechos reservados.