Precise-Integration Time-Domain Formulation for Optical Periodic Media

Please use this identifier to cite or link to this item: http://hdl.handle.net/10045/121235
Información del item - Informació de l'item - Item information
Title: Precise-Integration Time-Domain Formulation for Optical Periodic Media
Authors: Sirvent-Verdú, Joan Josep | Francés, Jorge | Márquez, Andrés | Neipp, Cristian | Alvarez, Mariela L. | Puerto, Daniel | Gallego, Sergi | Pascual, Inmaculada
Research Group/s: Holografía y Procesado Óptico
Center, Department or Service: Universidad de Alicante. Departamento de Física, Ingeniería de Sistemas y Teoría de la Señal | Universidad de Alicante. Departamento de Óptica, Farmacología y Anatomía | Universidad de Alicante. Instituto Universitario de Física Aplicada a las Ciencias y las Tecnologías
Keywords: Computational electromagnetics | Precise-integration time-domain (PITD) method | Periodic media | Anisotropic media | Diffractive optics
Knowledge Area: Física Aplicada | Óptica
Issue Date: 20-Dec-2021
Publisher: MDPI
Citation: Sirvent-Verdú JJ, Francés J, Márquez A, Neipp C, Álvarez M, Puerto D, Gallego S, Pascual I. Precise-Integration Time-Domain Formulation for Optical Periodic Media. Materials. 2021; 14(24):7896. https://doi.org/10.3390/ma14247896
Abstract: A numerical formulation based on the precise-integration time-domain (PITD) method for simulating periodic media is extended for overcoming the Courant-Friedrich-Levy (CFL) limit on the time-step size in a finite-difference time-domain (FDTD) simulation. In this new method, the periodic boundary conditions are implemented, permitting the simulation of a wide range of periodic optical media, i.e., gratings, or thin-film filters. Furthermore, the complete tensorial derivation for the permittivity also allows simulating anisotropic periodic media. Numerical results demonstrate that PITD is reliable and even considering anisotropic media can be competitive compared to traditional FDTD solutions. Furthermore, the maximum allowable time-step size has been demonstrated to be much larger than that of the CFL limit of the FDTD method, being a valuable tool in cases in which the steady-state requires a large number of time-steps.
Sponsor: The work was supported by the “Ministerio de Ciencia e Innovación” of Spain (projects FIS2017-82919-R; PID2019-106601RB-I00), by the “Universidad de Alicante” (UATALENTO18-10; ACIE-20-10), and by Generalitat Valenciana (projects BEST/2021/021; IDIFEDER/2021/014, potential FEDER funding; PROMETEO/2021/006).
URI: http://hdl.handle.net/10045/121235
ISSN: 1996-1944
DOI: 10.3390/ma14247896
Language: eng
Type: info:eu-repo/semantics/article
Rights: © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Peer Review: si
Publisher version: https://doi.org/10.3390/ma14247896
Appears in Collections:INV - GHPO - Artículos de Revistas

Files in This Item:
Files in This Item:
File Description SizeFormat 
ThumbnailSirvent-Verdu_etal_2021_Materials.pdf1,26 MBAdobe PDFOpen Preview


This item is licensed under a Creative Commons License Creative Commons