Framework for Embedding Process Simulator in GAMS via Kriging Surrogate Model Applied to C3MR Natural Gas Liquefaction Optimization

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10045/119612
Información del item - Informació de l'item - Item information
Título: Framework for Embedding Process Simulator in GAMS via Kriging Surrogate Model Applied to C3MR Natural Gas Liquefaction Optimization
Autor/es: Santos, Lucas F. | Costa, Caliane B.B. | Caballero, José A. | Ravagnani, Mauro A.S.S.
Grupo/s de investigación o GITE: Computer Optimization of Chemical Engineering Processes and Technologies (CONCEPT)
Centro, Departamento o Servicio: Universidad de Alicante. Departamento de Ingeniería Química
Palabras clave: Embedding process simulator | GAMS | Kriging surrogate model | C3MR natural gas liquefaction | Optimization
Área/s de conocimiento: Ingeniería Química
Fecha de publicación: 15-nov-2021
Editor: AIDIC - The Italian Association of Chemical Engineering
Cita bibliográfica: Chemical Engineering Transactions. 2021, 88: 475-480. https://doi.org/10.3303/CET2188079
Resumen: Rigorous black-box simulations are useful to describe complex systems. However, it cannot be directly integrated into mathematical programming models in some algebraic modeling environments because of the lack of symbolic formulation. In the present paper, a framework is proposed to embed the Aspen HYSYS process simulator in GAMS using kriging surrogate models to replace the simulator-dependent, black-box objective, and constraints functions. The approach is applied to the energy-efficient C3MR natural gas liquefaction process simulation optimization using multi-start nonlinear programming and the local solver CONOPT in GAMS. Results were compared with two other meta-heuristic approaches, Particle Swarm Optimization (PSO) and Genetic Algorithm (GA), and with the literature. In a small simulation evaluation budget of 20 times the number of decision variables, the proposed optimization approach resulted in 0.2538 kW of compression work per kg of natural gas and surpassed those of the PSO and GA and the previous literature from 2.45 to 15.3 %.
Patrocinador/es: The authors acknowledge the National Council for Scientific and Technological Development – CNPq (Brazil), processes 148184/2019-7, 440047/2019-6, 311807/2018-6, 428650/2018-0, and Coordination for the Improvement of Higher Education Personnel – CAPES (Brazil) for the financial support.
URI: http://hdl.handle.net/10045/119612
ISBN: 978-88-95608-86-0
ISSN: 2283-9216
DOI: 10.3303/CET2188079
Idioma: eng
Tipo: info:eu-repo/semantics/article
Derechos: © 2021, AIDIC Servizi S.r.l.
Revisión científica: si
Versión del editor: https://doi.org/10.3303/CET2188079
Aparece en las colecciones:INV - CONCEPT - Artículos de Revistas

Archivos en este ítem:
Archivos en este ítem:
Archivo Descripción TamañoFormato 
ThumbnailSantos_etal_2021_ChemEngTrans.pdf1,12 MBAdobe PDFAbrir Vista previa


Todos los documentos en RUA están protegidos por derechos de autor. Algunos derechos reservados.