Iterative multilinear optimization for planar model fitting under geometric constraints

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10045/118327
Información del item - Informació de l'item - Item information
Título: Iterative multilinear optimization for planar model fitting under geometric constraints
Autor/es: Azorin-Lopez, Jorge | Sebban, Marc | Fuster-Guilló, Andrés | Saval-Calvo, Marcelo | Habrard, Amaury
Grupo/s de investigación o GITE: Arquitecturas Inteligentes Aplicadas (AIA) | Informática Industrial y Redes de Computadores
Centro, Departamento o Servicio: Universidad de Alicante. Departamento de Tecnología Informática y Computación
Palabras clave: Linear regression | Optimization | RGBD cameras | Computer vision | Plane fitting
Área/s de conocimiento: Arquitectura y Tecnología de Computadores
Fecha de publicación: 29-sep-2021
Editor: PeerJ
Cita bibliográfica: Azorin-Lopez J, Sebban M, Fuster-Guillo A, Saval-Calvo M, Habrard A. 2021. Iterative multilinear optimization for planar model fitting under geometric constraints. PeerJ Computer Science 7:e691 https://doi.org/10.7717/peerj-cs.691
Resumen: Planes are the core geometric models present everywhere in the three-dimensional real world. There are many examples of manual constructions based on planar patches: facades, corridors, packages, boxes, etc. In these constructions, planar patches must satisfy orthogonal constraints by design (e.g. walls with a ceiling and floor). The hypothesis is that by exploiting orthogonality constraints when possible in the scene, we can perform a reconstruction from a set of points captured by 3D cameras with high accuracy and a low response time. We introduce a method that can iteratively fit a planar model in the presence of noise according to three main steps: a clustering-based unsupervised step that builds pre-clusters from the set of (noisy) points; a linear regression-based supervised step that optimizes a set of planes from the clusters; a reassignment step that challenges the members of the current clusters in a way that minimizes the residuals of the linear predictors. The main contribution is that the method can simultaneously fit different planes in a point cloud providing a good accuracy/speed trade-off even in the presence of noise and outliers, with a smaller processing time compared with previous methods. An extensive experimental study on synthetic data is conducted to compare our method with the most current and representative methods. The quantitative results provide indisputable evidence that our method can generate very accurate models faster than baseline methods. Moreover, two case studies for reconstructing planar-based objects using a Kinect sensor are presented to provide qualitative evidence of the efficiency of our method in real applications.
Patrocinador/es: This work was supported by the French ANR project LIVES (ANR-15-CE23-0026-03) and the Spanish State Research Agency (AEI) and the European Regional Development Fund (FEDER) under projects TIN2017-89069-R and PID2020-119144RB-I00.
URI: http://hdl.handle.net/10045/118327
ISSN: 2376-5992
DOI: 10.7717/peerj-cs.691
Idioma: eng
Tipo: info:eu-repo/semantics/article
Derechos: © 2021 Azorin-Lopez et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ Computer Science) and either DOI or URL of the article must be cited.
Revisión científica: si
Versión del editor: https://doi.org/10.7717/peerj-cs.691
Aparece en las colecciones:INV - I2RC - Artículos de Revistas
INV - AIA - Artículos de Revistas

Archivos en este ítem:
Archivos en este ítem:
Archivo Descripción TamañoFormato 
ThumbnailAzorin-Lopez_etal_2021_PeerJComputSci.pdf36,23 MBAdobe PDFAbrir Vista previa


Este ítem está licenciado bajo Licencia Creative Commons Creative Commons