Application of the Trace Coherence to HH-VV PolInSAR TanDEM-X Data for Vegetation Height Estimation

Please use this identifier to cite or link to this item: http://hdl.handle.net/10045/117297
Información del item - Informació de l'item - Item information
Title: Application of the Trace Coherence to HH-VV PolInSAR TanDEM-X Data for Vegetation Height Estimation
Authors: Romero-Puig, Noelia | Marino, Armando | Lopez-Sanchez, Juan M.
Research Group/s: Señales, Sistemas y Telecomunicación
Center, Department or Service: Universidad de Alicante. Departamento de Física, Ingeniería de Sistemas y Teoría de la Señal | Universidad de Alicante. Instituto Universitario de Investigación Informática
Keywords: Agriculture | Height | Inversion | Polarimetric and interferometric synthetic aperture radar (SAR) | Trace coherence (TrCoh)
Knowledge Area: Teoría de la Señal y Comunicaciones
Issue Date: 6-Aug-2021
Publisher: IEEE
Citation: IEEE Transactions on Geoscience and Remote Sensing. 2022, 60: 4404210. https://doi.org/10.1109/TGRS.2021.3101016
Abstract: This article investigates, for the first time, the inclusion of the operator Trace Coherence (TrCoh) in polarimetric and interferometric synthetic aperture radar (SAR) methodologies for the estimation of biophysical parameters of vegetation. A modified inversion algorithm based on the well-known Random Volume over Ground (RVoG) model, which employs the TrCoh, is described and evaluated. In this regard, a different set of coherence extrema is used as input for the retrieval stage. In addition, the proposed methodology improves the inversion algorithm by employing analytical solutions rather than approximations. Validation is carried out exploiting single-pass HH-VV bistatic TanDEM-X data, together with reference data acquired over a paddy rice area in Spain. The added value of the TrCoh and the convenience of the use of analytical solutions are assessed by comparing with the conventional polarimetric SAR interferometry (PolInSAR) algorithm. Results demonstrate that the modified proposed methodology is computationally more effective than current methods on this dataset. For the same scene, the steps required for inversion are computed in 6 min with the conventional method, while it only takes 6 s with the proposed approach. Moreover, vegetation height estimates exhibit a higher accuracy with the proposed method in all fields under evaluation. The root-mean-squared error reached with the modified method improves by 7 cm with respect to the conventional algorithm.
Sponsor: This work was supported in part by the Spanish Ministry of Science and Innovation, in part by the State Agency of Research (AEI), and in part by the European Funds for Regional Development (EFRD) under Project TEC2017-85244-C2-1-P. The work of Noelia Romero-Puig was supported in part by Generalitat Valenciana and in part by the European Social Fund (ESF) under Grant ACIF/2018/204.
URI: http://hdl.handle.net/10045/117297
ISSN: 0196-2892 (Print) | 1558-0644 (Online)
DOI: 10.1109/TGRS.2021.3101016
Language: eng
Type: info:eu-repo/semantics/article
Rights: © 2021 IEEE
Peer Review: si
Publisher version: https://doi.org/10.1109/TGRS.2021.3101016
Appears in Collections:INV - SST - Artículos de Revistas

Files in This Item:
Files in This Item:
File Description SizeFormat 
ThumbnailRomero-Puig_etal_2021_IEEE-TGRS_accepted.pdfAccepted Manuscript (acceso abierto)4,46 MBAdobe PDFOpen Preview
ThumbnailRomero-Puig_etal_2021_IEEE-TGRS_final.pdfVersión final (acceso restringido)4,24 MBAdobe PDFOpen    Request a copy


Items in RUA are protected by copyright, with all rights reserved, unless otherwise indicated.