Applications of bimetallic PdCu catalysts

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10045/114547
Registro completo de metadatos
Registro completo de metadatos
Campo DCValorIdioma
dc.contributorSíntesis Asimétrica (SINTAS)es_ES
dc.contributor.authorGholinejad, Mohammad-
dc.contributor.authorKhosravi, Faezeh-
dc.contributor.authorAfrasi, Mahmoud-
dc.contributor.authorSansano, Jose M.-
dc.contributor.authorNájera, Carmen-
dc.contributor.otherUniversidad de Alicante. Departamento de Química Orgánicaes_ES
dc.contributor.otherUniversidad de Alicante. Instituto Universitario de Síntesis Orgánicaes_ES
dc.date.accessioned2021-04-28T08:18:39Z-
dc.date.available2021-04-28T08:18:39Z-
dc.date.issued2021-03-08-
dc.identifier.citationCatalysis Science & Technology. 2021, 11: 2652-2702. https://doi.org/10.1039/D0CY02339Fes_ES
dc.identifier.issn2044-4753 (Print)-
dc.identifier.issn2044-4761 (Online)-
dc.identifier.urihttp://hdl.handle.net/10045/114547-
dc.description.abstractBimetallic PdCu nanoparticles can be applied as catalysts in a wide range of chemical and electrochemical reactions. This review article overviews the preparation and synthetic applications of these bimetallic nanoparticles (BNPs) developed mainly over the last 20 years. These BNPs show better catalytic activity and selectivity than the monometallic counterparts due to their electronic and structural interactions. Simple general preparation methods include reduction of the corresponding salt precursors by different agents, solvothermal processes and galvanic replacement. In the case of supported catalysts, mainly wet impregnation and in situ reduction processes are used. In addition, these nanomaterials are prepared with different Pd/Cu compositions and with different morphologies. In the case of supported materials, many solid supports especially alumina, silica, titania, ceria, magnetite, zeolites, active carbon, graphene, carbon nanotubes, resins and polymers are employed allowing the recovery and reuse of the supported catalyst. In addition, the presence of copper reduces the economic cost of using palladium in industrial processes. Among several synthetic applications, C–C bond forming reactions such as Suzuki–Miyaura, Sonogashira–Hagihara, Heck–Mizoroki, Guerbet and A3-coupling are efficiently performed with PdCu BNPs. Reduction reactions under PdCu catalysis such as nitrate reduction for water purification, hydrodechlorination of organic pollutants, hydrogenation of CO2 and CO to methanol, semihydrogenation of alkynes to alkenes, and hydrogenation of C[double bond, length as m-dash]C double bonds, furfural to furfuryl alcohol, polyols, levulinic and succinic acids to lactones, styrene oxide to 2-phenylethanol and nitroaromatics to aromatic amines can be successfully performed. In the case of electrocatalytic reductions, oxygen reduction to water, CO2 reductions to CO, to alcohols, to hydrocarbons and to formate and hydrogen generation from water splitting can be highlighted. In the field of oxidation reactions using oxygen, CO can be transformed into CO2, alcohols into aldehydes, cyclopentene to cyclopentanone, ethylene and acetic acid to vinyl acetate, and aromatic compounds can be hydroxylated to phenols. Electrooxidation reactions are useful processes especially for direct alcohol and formic acid fuel cells. The oxygen-assisted water gas shift reaction can be efficiently performed under PdCu catalysis. In the field of chemical sensors, PdCu BNPs can detect hydrogen in low concentrations, liquefied petroleum gas, formaldehyde, glucose, thiocyanate and phenols. Other applications such as catalysts in hydrosilylation of acetylenes to vinylsilanes and the use of PdCu NPs as antimicrobial agents are also described.es_ES
dc.description.sponsorshipThe authors are grateful to the Institute for Advanced Studies in Basic Sciences (IASBS) Research Council and Iran National Science Foundation (INSF-Grant number of 97016837) for support of this work. We also thank the Spanish Ministerio de Economía, Industria y Competitividad, Agencia Estatal de Investigación (AEI) and Fondo Europeo de Desarrollo Regional (FEDER, EU) (projects CTQ2016-76782-P, CTQ2016-81797-REDC, and CTQ2017-85093-P), the Generalitat Valenciana (PROMETEOII/2014/017) and the University of Alicante for financial support.es_ES
dc.languageenges_ES
dc.publisherRoyal Society of Chemistryes_ES
dc.rights© The Royal Society of Chemistry 2021es_ES
dc.subjectBimetallices_ES
dc.subjectPdCues_ES
dc.subjectCatalystses_ES
dc.subjectApplicationses_ES
dc.subject.otherQuímica Orgánicaes_ES
dc.titleApplications of bimetallic PdCu catalystses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.peerreviewedsies_ES
dc.identifier.doi10.1039/D0CY02339F-
dc.relation.publisherversionhttps://doi.org/10.1039/D0CY02339Fes_ES
dc.rights.accessRightsinfo:eu-repo/semantics/embargoedAccesses_ES
dc.date.embargoEndinfo:eu-repo/date/embargoEnd/2022-03-09es_ES
Aparece en las colecciones:INV - SINTAS - Artículos de Revistas

Archivos en este ítem:
Archivos en este ítem:
Archivo Descripción TamañoFormato 
ThumbnailGholinejad_etal_2021_CatalSciTechnol_final.pdfVersión final (acceso restringido)6,11 MBAdobe PDFAbrir    Solicitar una copia
ThumbnailGholinejad_etal_2021_CatalSciTechnol_revised.pdfEmbargo 12 meses (acceso abierto: 9 marzo 2022)2,22 MBAdobe PDFAbrir Vista previa


Todos los documentos en RUA están protegidos por derechos de autor. Algunos derechos reservados.