Photoelectrochemical Behavior and Computational Insights for Pristine and Doped NdFeO3 Thin-Film Photocathodes

Please use this identifier to cite or link to this item: http://hdl.handle.net/10045/114170
Información del item - Informació de l'item - Item information
Title: Photoelectrochemical Behavior and Computational Insights for Pristine and Doped NdFeO3 Thin-Film Photocathodes
Authors: Quiñonero, Javier | Pastor, Francisco J. | Orts, José M. | Gómez, Roberto
Research Group/s: Grupo de Fotoquímica y Electroquímica de Semiconductores (GFES) | Grupo de Espectroelectroquímica y Modelización (GEM)
Center, Department or Service: Universidad de Alicante. Departamento de Química Física | Universidad de Alicante. Instituto Universitario de Electroquímica
Keywords: NdFeO3 | Photoelectrochemistry | Doping | Photocathode | DFT
Knowledge Area: Química Física
Issue Date: 17-Mar-2021
Publisher: American Chemical Society
Citation: ACS Applied Materials & Interfaces. 2021, 13(12): 14150-14159. https://doi.org/10.1021/acsami.0c21792
Abstract: Among the different strategies that are being developed to solve the current energy challenge, harvesting energy directly from sunlight through a tandem photoelectrochemical cell (water splitting) is most attractive. Its implementation requires the development of stable and efficient photocathodes, NdFeO3 being a suitable candidate among ternary oxides. In this study, transparent NdFeO3 thin-film photocathodes have been successfully prepared by a citric acid-based sol–gel procedure, followed by thermal treatment in air at 640 °C. These electrodes show photocurrents for both the hydrogen evolution and oxygen reduction reactions. Doping with Mg2+ and Zn2+ has been observed to significantly enhance the photoelectrocatalytic performance of NdFeO3 toward oxygen reduction. Magnesium is slightly more efficient as a dopant than Zn, leading to a multiplication of the photocurrent by a factor of 4–5 for a doping level of 5 at % (with respect to iron atoms). This same trend is observed for hydrogen evolution. The beneficial effect of doping is primarily attributed to an increase in the density and a change in the nature of the majority charge carriers. DFT calculations help to rationalize the behavior of NdFeO3 by pointing to the importance of nanostructuring and doping. All in all, NdFeO3 has the potential to be used as a photocathode in photoelectrochemical applications, although efforts should be directed to limit surface recombination.
Sponsor: This work has been developed in the context of project RTI2018-102061-B-I00 financed by FEDER/Ministerio de Ciencia e Innovación-Agencia Estatal de Investigación. The Generalitat Valenciana through project PROMETEO/2020/089 is also gratefully acknowledged. J.Q. and F.J.P. thank the Ministerio de Educación, Cultura y Deporte (MECD) for the award of FPU predoctoral grants (FPU15/02005 and FPU16/02492, respectively).
URI: http://hdl.handle.net/10045/114170
ISSN: 1944-8244 (Print) | 1944-8252 (Online)
DOI: 10.1021/acsami.0c21792
Language: eng
Type: info:eu-repo/semantics/article
Rights: © 2021 American Chemical Society. Creative Commons Attribution 4.0 International License (CC BY 4.0)
Peer Review: si
Publisher version: https://doi.org/10.1021/acsami.0c21792
Appears in Collections:INV - GFES - Artículos de Revistas
INV - GEM - Artículos de Revistas

Files in This Item:
Files in This Item:
File Description SizeFormat 
ThumbnailQuinonero_etal_2021_ACSApplMaterInterfaces.pdf3,29 MBAdobe PDFOpen Preview


Items in RUA are protected by copyright, with all rights reserved, unless otherwise indicated.