Excitation and ionisation cross-sections in condensed-phase biomaterials by electrons down to very low energy: application to liquid water and genetic building blocks

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10045/113630
Registro completo de metadatos
Registro completo de metadatos
Campo DCValorIdioma
dc.contributorInteracción de Partículas Cargadas con la Materiaes_ES
dc.contributor.authorVera Gomis, Pablo de-
dc.contributor.authorAbril, Isabel-
dc.contributor.authorGarcía Molina, Rafael-
dc.contributor.otherUniversidad de Alicante. Departamento de Física Aplicadaes_ES
dc.date.accessioned2021-03-15T07:09:41Z-
dc.date.available2021-03-15T07:09:41Z-
dc.date.issued2021-02-10-
dc.identifier.citationPhysical Chemistry Chemical Physics. 2021, 23: 5079-5095. https://doi.org/10.1039/D0CP04951Des_ES
dc.identifier.issn1463-9076 (Print)-
dc.identifier.issn1463-9084 (Online)-
dc.identifier.urihttp://hdl.handle.net/10045/113630-
dc.description.abstractElectronic excitations and ionisations produced by electron impact are key processes in the radiation-induced damage mechanisms in materials of biological relevance, underlying important medical and technological applications, including radiotherapy, radiation protection in manned space missions and nanodevice fabrication techniques. However, experimentally measuring all the necessary electronic interaction cross-sections for every relevant material is an arduous task, so it is necessary having predictive models, sufficiently accurate yet easily implementable. In this work we present a model, based on the dielectric formalism, to provide reliable ionisation and excitation cross-sections for electron-impact on complex biomolecular media, considering their condensed-phase nature. We account for the indistinguishability and exchange between the primary beam and excited electrons, for the molecular electronic structure effects in the electron binding, as well as for low-energy corrections to the first Born approximation. The resulting approach yields total ionisation cross-sections, energy distributions of secondary electrons, and total electronic excitation cross-sections for condensed-phase biomaterials, once the electronic excitation spectrum is known, either from experiments or from a predictive model. The results of this methodology are compared with the available experimental data in water and DNA/RNA molecular building blocks, showing a very good agreement and a great predictive power in a wide range of electron incident energies, from the large values characteristic of electron beams down to excitation threshold. The proposed model constitutes a very useful procedure for computing the electronic interaction cross-sections for arbitrary biological materials in a wide range of electron incident energies.es_ES
dc.description.sponsorshipThis work has received funding from the European Union's Horizon 2020 Research and Innovation programme under the Marie Sklodowska-Curie grant agreement no. 840752, from the Spanish Ministerio de Economía y Competitividad and the European Regional Development Fund (Project no. PGC2018-096788-B-I00), from the Fundación Séneca (Project no. 19907/GERM/15) and from the Conselleria d'Educació, Investigació, Cultura i Esport de la Generalitat Valenciana (Project no. AICO/2019/070). PdV acknowledges further financial support provided by the Spanish Ministerio de Economía y Competitividad by means of a Juan de la Cierva postdoctoral fellowship (FJCI-2017-32233).es_ES
dc.languageenges_ES
dc.publisherRoyal Society of Chemistryes_ES
dc.rights© the Owner Societies 2021. This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.es_ES
dc.subjectExcitationes_ES
dc.subjectIonisationes_ES
dc.subjectCross-sectionses_ES
dc.subjectCondensed-phase biomaterialses_ES
dc.subjectElectrons downes_ES
dc.subjectLiquid wateres_ES
dc.subjectGenetic building blockses_ES
dc.subject.otherFísica Aplicadaes_ES
dc.titleExcitation and ionisation cross-sections in condensed-phase biomaterials by electrons down to very low energy: application to liquid water and genetic building blockses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.peerreviewedsies_ES
dc.identifier.doi10.1039/D0CP04951D-
dc.relation.publisherversionhttps://doi.org/10.1039/D0CP04951Des_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/840752es_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-096788-B-I00-
Aparece en las colecciones:INV - IPCM - Artículos de Revistas
Investigaciones financiadas por la UE

Archivos en este ítem:
Archivos en este ítem:
Archivo Descripción TamañoFormato 
Thumbnailde-Vera_etal_2021_PhysChemChemPhys.pdf8,64 MBAdobe PDFAbrir Vista previa


Este ítem está licenciado bajo Licencia Creative Commons Creative Commons