Refined electron-spin transport model for single-element ferromagnetic systems: Application to nickel nanocontacts

Please use this identifier to cite or link to this item: http://hdl.handle.net/10045/111262
Información del item - Informació de l'item - Item information
Title: Refined electron-spin transport model for single-element ferromagnetic systems: Application to nickel nanocontacts
Authors: Dednam, Wynand | Sabater, Carlos | Tal, Oren | Palacios Burgos, Juan José | Botha, André Erasmus | Caturla, Maria J.
Research Group/s: Grupo de Nanofísica | Física de la Materia Condensada
Center, Department or Service: Universidad de Alicante. Departamento de Física Aplicada
Keywords: Electron-spin transport model | Single-element | Ferromagnetic systems | Nickel nanocontacts
Knowledge Area: Física Aplicada
Issue Date: 14-Dec-2020
Publisher: American Physical Society
Citation: Physical Review B. 2020, 102: 245415. https://doi.org/10.1103/PhysRevB.102.245415
Abstract: Through a combination of atomistic spin-lattice dynamics simulations and relativistic ab initio calculations of electronic transport we shed light on unexplained electrical measurements in nickel nanocontacts created by break junction experiments under cryogenic conditions (4.2 K). We implement post-self-consistent-field corrections in the conductance calculations to account for spin-orbit coupling and the noncollinearity of the spins, resulting from the spin-lattice dynamics. We find that transverse magnetic domain walls are formed preferentially in (111)-oriented face-centered-cubic nickel atomic-sized contacts, which also form elongated constrictions, giving rise to enhanced individual domain wall magnetoresistance. Our calculations show that the ambiguity surrounding the conductance of a priori uniformly magnetized nickel nanocontacts can be traced back to the crystallographic orientation of the nanocontacts, rather than spontaneously formed magnetic domain walls “pinned” at their narrowest points.
Sponsor: This work was supported by the Generalitat Valenciana through Grant No. PROMETEO2017/139. C.S. gratefully acknowledges financial support from the Dean Fellowship of the Weizmann Institute of Science and Generalitat Valenciana (Grant No. CDEIGENT2018/028). O.T. appreciates the support of the Harold Perlman family, and acknowledges funding by a research grant from Dana and Yossie Hollander, the Israel Science Foundation (Grant No. 1089/15), the Minerva Foundation (Grant No. 120865), and The Ministry of Science and Technology of Israel (Grant No. 3-16244). J.J.P. acknowledges financial support from Spanish MINECO through Grants No. FIS2016-80434-P and No. PID2019-109539GB-C43, the Fundación Ramón Areces, the María de Maeztu Program for Units of Excellence in R&D (Grant No. CEX2018-000805-M), the Comunidad Autónoma de Madrid through the Nanomag COST-CM Program (Grant No. S2018/NMT-4321), the European Union Seventh Framework Programme under Grant Agreement No. 604391 Graphene Flagship, the Centro de Computación Científica of the Universidad Autónoma de Madrid and the computer resources at MareNostrum and the technical support provided by the Barcelona Supercomputing Center (Grant No. FI-2019-2-0007). The SLD and DFT calculations in this paper were performed on the high-performance computing facilities of the University of Alicante and the University of South Africa.
URI: http://hdl.handle.net/10045/111262
ISSN: 2469-9950 (Print) | 2469-9969 (Online)
DOI: 10.1103/PhysRevB.102.245415
Language: eng
Type: info:eu-repo/semantics/article
Rights: © 2020 American Physical Society
Peer Review: si
Publisher version: https://doi.org/10.1103/PhysRevB.102.245415
Appears in Collections:INV - Física de la Materia Condensada - Artículos de Revistas
INV - Grupo de Nanofísica - Artículos de Revistas
Research funded by the EU

Files in This Item:
Files in This Item:
File Description SizeFormat 
ThumbnailDednam_etal_2020_PhysRevB.pdf1,83 MBAdobe PDFOpen Preview


Items in RUA are protected by copyright, with all rights reserved, unless otherwise indicated.