Quantum Confinement of Dirac Quasiparticles in Graphene Patterned with Sub‐Nanometer Precision

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10045/108410
Información del item - Informació de l'item - Item information
Título: Quantum Confinement of Dirac Quasiparticles in Graphene Patterned with Sub‐Nanometer Precision
Autor/es: Cortés‐del Río, Eva | Mallet, Pierre | González‐Herrero, Héctor | Lado, Jose L. | Fernández-Rossier, Joaquín | Gómez‐Rodríguez, José María | Veuillen, Jean‐Yves | Brihuega, Iván
Grupo/s de investigación o GITE: Grupo de Nanofísica
Centro, Departamento o Servicio: Universidad de Alicante. Departamento de Física Aplicada
Palabras clave: Atomic manipulation | Graphene | Graphene quantum dots | Nanopatterning | Scanning tunneling microscopy
Área/s de conocimiento: Física de la Materia Condensada
Fecha de publicación: 29-jul-2020
Editor: Wiley-VCH Verlag GmbH & Co. KGaA
Cita bibliográfica: Advanced Materials. 2020, 32(30): 2001119. https://doi.org/10.1002/adma.202001119
Resumen: Quantum confinement of graphene Dirac‐like electrons in artificially crafted nanometer structures is a long sought goal that would provide a strategy to selectively tune the electronic properties of graphene, including bandgap opening or quantization of energy levels. However, creating confining structures with nanometer precision in shape, size, and location remains an experimental challenge, both for top‐down and bottom‐up approaches. Moreover, Klein tunneling, offering an escape route to graphene electrons, limits the efficiency of electrostatic confinement. Here, a scanning tunneling microscope (STM) is used to create graphene nanopatterns, with sub‐nanometer precision, by the collective manipulation of a large number of H atoms. Individual graphene nanostructures are built at selected locations, with predetermined orientations and shapes, and with dimensions going all the way from 2 nm up to 1 µm. The method permits the patterns to be erased and rebuilt at will, and it can be implemented on different graphene substrates. STM experiments demonstrate that such graphene nanostructures confine very efficiently graphene Dirac quasiparticles, both in 0D and 1D structures. In graphene quantum dots, perfectly defined energy bandgaps up to 0.8 eV are found that scale as the inverse of the dot’s linear dimension, as expected for massless Dirac fermions.
Patrocinador/es: This work was supported by AEI and FEDER under projects MAT2016-80907-P and MAT2016-77852-C2-2-R (AEI/FEDER, UE) by the Fundación Ramón Areces, the Comunidad de Madrid NMAT2D-CM program under grant S2018/NMT-4511, and the Spanish Ministry of Science and Innovation, through the “María de Maeztu” Programme for Units of Excellence in R&D (CEX2018-000805-M). European Union through the FLAG-ERA program HiMagGraphene project PCIN-2015-030; No. ANR-15-GRFL-0004) and the Graphene Flagship program (Grant agreement 604391). J.L.L acknowledges financial support from the ETH Fellowship program; J.F.-R. acknowledges supported by Fundação para a Ciência e a Tecnologia grants P2020-PTDC/FIS-NAN/3668/2014 and TAPEXPL/NTec/0046/2017.
URI: http://hdl.handle.net/10045/108410
ISSN: 0935-9648 (Print) | 1521-4095 (Online)
DOI: 10.1002/adma.202001119
Idioma: eng
Tipo: info:eu-repo/semantics/article
Derechos: © 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Revisión científica: si
Versión del editor: https://doi.org/10.1002/adma.202001119
Aparece en las colecciones:INV - Grupo de Nanofísica - Artículos de Revistas

Archivos en este ítem:
Archivos en este ítem:
Archivo Descripción TamañoFormato 
ThumbnailCortes-del-Rio_etal_2020_AdvMater_final.pdfVersión final (acceso restringido)2,05 MBAdobe PDFAbrir    Solicitar una copia
ThumbnailCortes-del-Rio_etal_2020_AdvMater_preprint.pdfPreprint (acceso abierto)2,08 MBAdobe PDFAbrir Vista previa


Todos los documentos en RUA están protegidos por derechos de autor. Algunos derechos reservados.