Compensatory Thermal Adaptation of Soil Microbial Respiration Rates in Global Croplands

Empreu sempre aquest identificador per citar o enllaçar aquest ítem http://hdl.handle.net/10045/107881
Información del item - Informació de l'item - Item information
Títol: Compensatory Thermal Adaptation of Soil Microbial Respiration Rates in Global Croplands
Autors: Ye, Jian‐Sheng | Bradford, Mark A. | Maestre, Fernando T. | Li, Feng‐Min | García‐Palacios, Pablo
Centre, Departament o Servei: Universidad de Alicante. Departamento de Ecología | Universidad de Alicante. Instituto Multidisciplinar para el Estudio del Medio "Ramón Margalef"
Paraules clau: Soil microbial respiration | Thermal adaptation | Global croplands | Climate change
Àrees de coneixement: Ecología
Data de publicació: de juny-2020
Editor: Wiley | American Geophysical Union
Citació bibliogràfica: Global Biogeochemical Cycles. 2020, 34(6): e2019GB006507. doi:10.1029/2019GB006507
Resum: Understanding whether soil microbial respiration adapts to the ambient thermal climate with an enhanced or compensatory response, hence potentially stimulating or slowing down soil carbon losses with warming, is key to accurately forecast and model climate change impacts on the global carbon cycle. Despite the interest in this topic and the plethora of recent studies in natural ecosystems, it has been seldom explored in croplands. Using two recently published independent datasets of soil microbial metabolic quotient (MMQ; microbial respiration rate per unit biomass) and carbon use efficiency (CUE; partitioning of C to microbial growth vs. respiration), we find a compensatory thermal adaptive response for MMQ in global croplands. That is, mean annual temperature (MAT) has a negative effect on MMQ. However, this compensatory thermal adaptation is only half or less of that found in previous studies for noncultivated ecosystems. In contrast to the negative MMQ‐MAT pattern, microbial CUE increases with MAT across global croplands. By incorporating this positive CUE‐MAT relationship (greater C partitioning into microbial growth rather than respiration with increasing temperature) into a microbial‐explicit soil organic carbon model, we successfully predict the thermal compensation of MMQ observed in croplands. Our model‐data integration and database cross‐validation suggest that a warmer climate may select for microbial communities with higher CUE, providing a plausible mechanism for their compensatory metabolic response. By helping to identify appropriate representations of microbial physiological processes in soil biogeochemical models, our work will help build confidence in model projections of cropland C dynamics under a changing climate.
Patrocinadors: JSY was funded by the Second Tibetan Plateau Scientific Expedition and Research (2019QZKK0305) and the Fundamental Research Funds for the Central Universities (lzujbky‐2020‐kb43). This research was supported by the European Research Council (ERC Grant Agreement 647038 [BIODESERT]). PGP is supported by a Ramón y Cajal grant from the Spanish Ministry of Science and Innovation (RYC2018‐024766‐I). MAB was partially supported by a US National Science Foundation grant (DEB‐1926482).
URI: http://hdl.handle.net/10045/107881
ISSN: 0886-6236 (Print) | 1944-9224 (Online)
DOI: 10.1029/2019GB006507
Idioma: eng
Tipus: info:eu-repo/semantics/article
Drets: © 2020 American Geophysical Union
Revisió científica: si
Versió de l'editor: https://doi.org/10.1029/2019GB006507
Apareix a la col·lecció: Personal Investigador sense Adscripció a Grup
INV - DRYLAB - Artículos de Revistas

Arxius per aquest ítem:
Arxius per aquest ítem:
Arxiu Descripció Tamany Format  
ThumbnailYe_etal_2020_GlobBiogeochemCycles_final.pdf1,4 MBAdobe PDFObrir Vista prèvia


Tots els documents dipositats a RUA estan protegits per drets d'autors. Alguns drets reservats.