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in preparative scale [e.g. 3.30 g of N-(1,3-diphenylallyl)-4-nitroaniline]. The catalyst could be 

reused up to 15 cycles without loss of activity, proving its robustness. 

INTRODUCTION 

The necessity to develop new strategies for reducing the damage to the environment is currently 

one of the main concerns of organic chemistry.
1-4

 In this sense, the allylic substitution reaction of 

alcohols is a straightforward and environmentally friendly process to afford a huge variety of 

allylic derivatives, preventing the derivatisation of the starting material as acetates, phosphates, 

carbonates or halides, and avoiding the use of coupling agents
5
 (for instance, the Mitsunobu

6
 

reaction). Nevertheless, this strategy has two main inconveniences: the poor ability of the 

hydroxyl group as leaving group and the formation of stoichiometric amounts of water, which 

can be detrimental for some catalytic systems.
7
 Therefore, the design of new catalytic systems 

able to overcome these limitations is of interest.
7-13

 Among allylic derivatives, allylic amines are 

present in various biologically active compounds, such as antifungal drugs and calcium channel 

blockers.
14

 The allylic substitution of alcohols with anilines is a simple method to afford this type 

of compounds. Regarding this reaction, three products are expected depending on the 

substituents: 2-allylanilines,
15,16

 4-allylanilines
16-24

 and N-allylanilines,
14-16,19,23,25-45

 being this 

product the predominant regardless of the catalytic system when transition-metal complexes are 

employed.
19

 Nevertheless, only a few examples of the allylic substitution of alcohols with 

anilines employing metal-free catalytic systems have been described. Both p-toluenesulfonic 

acid monohydrate (PTS) and polymer-bound p-toluenesulfonic acid have been used in the allylic 

substitution of (E)-1,3-diphenyl-2-propen-1-ol with 4-nitroaniline to produce the corresponding 

N-arylation product, but other allylic alcohols or anilines have not been tested (Scheme 1a).
26
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 3

Fluorinated alcohols have been proved to be effective in the allylic substitution of (E)-1,3-

diphenyl-2-propen-1-ol with amines, but only two examples have been reported using anilines, 

both of them being 4-substituted with an electron-withdrawing group (Scheme 1b).
39

 None of the 

previous catalytic systems was recyclable, and they required the use of solvent. In this work, we 

have developed a methodology to carry out the substitution of allylic alcohols with different 

ortho-, meta- and para-substituted anilines by using a recyclable metal-free catalyst, being 

possible to scale it up to 10 mmol (Scheme 1c). 

 

Scheme 1. Previous and present work in the metal-free catalyzed substitution reaction of allylic 

alcohols with anilines. 

Traditionally, heterogeneous catalysts have consisted of metal-based systems. Recently, several 

types of heterogeneous organocatalysts have been developed to mimic the unique properties of 

heterogenous metal-based catalytic systems, easily recoverable and recyclable. Until now, 
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 4

reported metal-free heterogeneous catalysts include carbocatalysts (graphene-type materials)
46,47

 

and supported organocatalysts, either on organic (covalent organic frameworks)
48

 or inorganic 

(silica-based materials)
49,50

 supports. As far as we know, all the heterogeneous organocatalysts 

found in the literature depend upon a support. 

Our research group is aware of the importance of finding sustainable processes. Thus, we 

consider the search for catalytic systems, both heterogeneous and homogeneous, essential for this 

aim. In this sense, imidazole derivatives bearing carboxyl moieties can be synthesised by simple 

methodologies using inexpensive starting materials. From these compounds, it is possible to 

design a variety of catalytic systems. We employed functionalised imidazolium derivatives as 

precursors for N-heterocyclic carbene (NHC) ligands for palladium in organic 

transformations.
51,52

 In combination with metal salts, such as iron(III) chloride, imidazolium salts 

can produce Iron-Based Lewis Acid Ionic Liquids (IBLAILs), which proved to be very versatile 

catalytic systems.
16

 Furthermore, we employed metal-organic frameworks based on 

imidazolium-dicarboxylate as efficient and robust catalysts for organic transformations.
53,54

 

Recently, we have envisioned the use of imidazole derivatives bearing carboxylic acids as 

catalytic systems by themselves. Herein, we report the use of 1,3-

bis(carboxymethyl)imidazolium chloride (bcmim-Cl), which is an organic salt, as catalyst. 

Although this Ionic Organic Solid (IOS) is apparently similar to Ionic Liquids (ILs), which have 

been used as catalysts as well,
55-59

 the fact of being solid result in a more facile separation from 

the reaction mixture by filtration. This behaviour is unprecedented according to our research into 

the literature. In addition, bcmim-Cl is easily prepared from readily accessible starting materials 

(i.e. formaldehyde, glyoxal, the naturally occurring amino acid glycine and hydrogen chloride) in 

two simple and efficient steps, being able the preparation in multigram scale (Scheme 2).
53,54
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 5

 

Scheme 2. Synthesis of bcmim-Cl in multigram scale. 

RESULTS AND DISCUSSION 

The imidazolium derivative bcmim-Cl was tested as catalyst (using 10 mol%) in the reaction of 

(E)-1,3-diphenyl-2-propen-1-ol (1a) and aniline (2a) at different temperatures, in the absence of 

any solvent (Scheme 3). The three expected products (3aa, 4aa and 5aa) were obtained in 

different ratios depending on the temperature and the reaction time. At 60 ºC, the major product 

was 3aa, either at short and long reaction times, 4aa and 5aa being observed as traces (Figure 

1a). When the temperature was increased to 80 ºC and 100 ºC, 3aa was rapidly formed at the 

beginning, and then it turned into 4aa and 5aa at longer reaction times (Figure 1b and c). At 80 

ºC, 3aa continued as the major product after 24 hours (Figure 1b), while at 100 ºC 4aa became 

the major product (Figure 1c). At 120 ºC, 4aa and 5aa were formed from the beginning and the 

ratio (38:62 for 4aa/5aa) was maintained after 24 hours (see ESI). These experiments prove that 

both the ortho- and the para-substituted products (4aa and 5aa) can be form from the N-allylated 

product 3aa. Among the conditions in which product 3aa was selectively formed, 80 ºC and 2 

hours were chosen to continue with the study, reaching a trade-off between time and 

temperature, being the product 3aa obtained in 82% yield. No further optimisation was necessary 

since the reaction took place using the starting materials in 1:1 ratio and in the absence of any 

solvent or additive. At this point, we proved that a higher amount (i.e. 20 mol%) of catalyst 
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 6

bcmim-Cl produced 3aa in similar yield (83%), and lowering the amount of catalyst to 1 mol% 

reduced the yield of 3aa to 75%. 

 

Scheme 3. Reaction between (E)-1,3-diphenyl-2-propen-1-ol (1a) and aniline (2a): Expected 

products. 
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 7

 

Figure 1. Reaction between (E)-1,3-diphenyl-2-propen-1-ol (1a) and aniline (2a). Reaction 

profile dependent on the temperature for the three expected products: N-allylaniline 3aa (■), 

ortho-allylaniline 4aa (●) and para-allylaniline 5aa (♦). 

To find the scope of the N-allylation reaction using the IOS bcmim-Cl, several anilines were 

evaluated. The N-allylation product of the model reaction was isolated in very good yield (Table 

1, compound 3aa, 82%). Anilines bearing electron-withdrawing groups in the para-position, 

such as nitro, chlorine, bromine and carboxy, afforded the corresponding N-allylanilines in 

excellent conversions and very good to excellent yields (Table 1, compounds 3ab, 3ad, 3ag and 

3ai). Likewise, electron-withdrawing groups in the ortho-position, such as nitro, chlorine, 

bromine, cyano, acetyl and benzoyl led to the formation of the corresponding N-allylanilines in 
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 8

very good to excellent yields (Table 1, compounds 3ac, 3af, 3ah, 3aj, 3ak and 3al). 

Furthermore, we proved that meta-substituted anilines, such as 3-chloroaniline, led to the 

formation of the corresponding product in excellent yield (Table 1, compound 3ae). These 

results demonstrate the robustness of the methodology with electron-poor aromatic systems 

regardless of the position of the substituent. Furthermore, excellent conversions were obtained in 

all the cases and decreases in the yield were due to the isolation process. Regarding electron-

donating groups, both 4-methylaniline and 4-methoxyaniline, gave the corresponding products in 

moderate yields, even when the time was extended to 24 hours (Table 1, compounds 3am and 

3an). Finally, we tested 2,5-dimethylaniline as nucleophile and the expected product was formed 

in moderate yield (Table 1, compound 3ao), albeit in this case the formation of other by-products 

was observed. Additionally, we tried a non-aromatic amine, such as benzylamine, without 

observing the formation of the substitution product. It should be pointed out that several products 

could be obtained with >95% purity (determined by 
1
H NMR) by simple filtration (Table 1, 

compounds 3ab, 3ac and 3ad), which shows the usefulness of this procedure for synthetic 

purposes. Moreover, this proves that the catalyst can be completely recovered from the reaction 

mixture by simple filtration, since no traces appear in the filtrate. 

To further explore the versatility of this catalytic system, the reaction was performed with other 

allylic alcohols. Thus, (E)-1,3-bis(4-chlorophenyl)-2-propen-1-ol (1b) was reacted with anilines 

2b and 2d, obtaining full conversion and quantitative isolated yield in both cases by simple 

filtration (Table 2, compounds 3bb and 3bd). Non-symmetrically substituted alcohols, such as 

(E)-3-(4-chlorophenyl)-1-phenyl-2-propen-1-ol (1c) and (E)-3-(4-methoxyphenyl)-1-phenyl-2-

propen-1-ol (1d) led to the formation of two regioisomers in a ratio ca. 1:1 when they were 

reacted with different anilines (Table 2, compounds 3cb, 3cj, 3dh, 3dl and regioisomers). These 
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 9

experiments proved that the reaction takes place via allylic carbocation. The conversions and 

yields were excellent regardless of the nature of the substituent. Compounds 3dh and 3dl 

(together with their regioisomers) could be obtained by simple filtration. 

Table 1. Scope of the reaction: Anilines
a
 

 

 

 

a
 Reaction conditions: 1 (0.5 mmol), 2 (0.5 mmol), bcmim-Cl (10 mol%), 80 ºC, 2 h. 

Conversion determined by GC analysis (in brackets, isolated yield after preparative TLC). 
b
 

Reaction time: 1.5 h. 
c
 Conversion determined by 

1
H NMR. 

d
 Obtained pure after filtration. 

e
 

Isolated by column chromatography. 
f
 Reaction time: 24 h. 

g
 (E)-2-(1,3-Diphenylallyl)-4-

methoxyaniline was observed (21% conversion) along with 3am. 
h
 (E)-2-(1,3-Diphenylallyl)-

4-methylaniline was observed (19% conversion) along with 3an. 
i
 (E)-2-(1,3-Diphenylallyl)-

3,6-dimethylaniline was observed (22% conversion) along with 3ao. 
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 10

Table 2. Scope of the reaction: Alcohols
a
 

 

NH

3bb 3bd

>99% (>99%)b >99% (>99%)b

Cl Cl

O2N

NH

Cl Cl

Cl

NH

3cb 3cb'

93% (83%) [~50:50]

Cl

O2N

Cl

HN

NO2

NH

3cj 3cj'

>99% (90%) [54:46]c

Cl Cl

HN

CN NC

NH

3dh 3dh'

>99% (>99%) [57:43]

MeO MeO

HN

Br Br

NH

3dl 3dl'

>99% (>99%) [53:47]

MeO MeO

HN

Ph

O

Ph

O

 

a
 Reaction conditions: 1 (0.5 mmol), 2 (0.5 mmol), bcmim-Cl (10 mol%), 80 ºC, 2 h. 

Conversion determined by 
1
H NMR (in brackets, isolated yield after preparative TLC) [in 

square brackets, ratio of the regioisomers determined by 
1
H NMR]. 

b
 Obtained pure after 

filtration. 
c
 Conversion and ratio of the regioisomers determined by

 
GC analysis. 

 

At that point, we tried to recycle the catalyst in the reaction between alcohol 1a and aniline 2d. 

As the catalyst remained solid after the reaction, it was recovered by centrifugation using ethyl 

acetate to remove the product. Then, the reaction was set again by only adding the starting 

materials and we were glad to observe that the desired product was obtained in full conversion. 
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 11

The efficiency and ease to recover and reuse the catalyst allowed us to prove its robustness, 

being used up to 15 cycles without loss of activity (Figure 2, cumulative TON: 150). To prove 

the purity with which the reaction took place, the product from the last run was purified, isolating 

3ad in 97% yield. It is worth mentioning that the catalyst was completely recovered after each 

cycle, as it is insoluble in the work-up solvent, with no loss of catalyst mas being observed after 

the different cycles. In addition, as previously mentioned, no traces of catalyst were detected in 

the product obtained (
1
H NMR) in the filtrate. However, we cannot rule out the possibility that 

during the reaction the catalyst can be partially solubilized when it interacts with the reactants, 

being recovered as solid after the reaction is completed. 

 

Figure 2. Recycling of the catalyst. 

The reaction between 1a and 2b was scaled up to 10 mmol, obtaining the expected product in 

99% yield (3.3 g) after removing the catalyst by filtration using ethyl acetate (Scheme 4). It 

should be pointed out that the reaction time could be reduced to 15 minutes. The E-factor was 

calculated to measure the environmental impact of the process. Taking into account that only 10 

mL of ethyl acetate were necessary to separate the product from the catalyst, an E-factor of 2.8 

was obtained, which is within the numbers of production of bulk chemicals in the industry.
4
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 12

 

Scheme 4. Reaction between 1a and 2b in multigram scale. 

To discern the significance of the moieties of the IOS bcmim-Cl during the catalysis, the 

reaction between 1a and 2d was carried out using similar imidazole derivatives under the 

standard conditions (Table 3). With the zwitterion bcmim, the reaction did not proceed at all, 

even at longer reaction times (Table 3, entry 2). Using 1-benzyl-3-

(methoxycarbonylmethyl)imidazolium chloride (Im1), an imidazolium salt bearing an ester 

group, gave rise to full conversion to the product 3ad, similar than bcmim-Cl (Table 3, entry 3). 

The presence of other oxygen-containing functional groups in the catalyst led to a drop in the 

conversion to the expected product. Indeed, an imidazolium chloride bearing a ketone [i.e. 1-

methyl-3-(2-oxo-2-phenylethyl)imidazolium chloride, Im2] as catalyst gave only a conversion of 

43%, and an imidazolium chloride bearing a hydroxy group [i.e. 1-benzyl-3-(2-hydroxy-2-

phenylethyl)imidazolium chloride, Im3] provided similar conversion (40%, Table 3, entries 4 

and 5). Finally, the use of 1-benzyl-3-methylimidazolium chloride (Im4), under the same 

conditions, resulted in a conversion of 36% (Table 3, entry 6). From these results, we could 

conclude that (a) the presence of the hydrogen (OH) is not sufficient for the activation to be 

effective and (b) the chloride, the carbonyl and the alkoxy (or hydroxy) moieties have a key role 

in the mechanism, being they complementary. Consequently, the presence of only one of them 

led to the formation of the desired product in lower yield than when the three of them were 

present in the catalyst (compare with Table 3, entry 1). Besides, the presence of an acid moiety is 
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 13

not strictly necessary, since the use of an ester moiety instead of gave similar results as proved 

with Im1 and also comparing Im5 and Im6 (Table 3, entries 7 and 8). Based on these results and 

others from the literature,
7,16

 we speculate that bcmim-Cl assists in the formation of the allylic 

carbocation via hydrogen bonding of the alcohol with the carbonyl and the chlorine (Scheme 5, 

intermediate I). The fact of the ester and the acid being more effective than the ketone could be 

due to the enhanced electron-donor capacity of these species on account of the alkoxy or 

hydroxy moieties. As a consequence of the formation of an allylic carbocation, two regioisomers 

can be obtained from non-symmetric carbocations. Finally, we have considered other ammonium 

chlorides bearing oxygenated functional groups, such as choline chloride (ChCl) and 

acetylcholine chloride (AcChCl), as catalysts, observing low conversions to the corresponding 

product 3ad (Table 3, entries 9 and 10). Thus, the imidazolium core can help in the activation 

due to its structure or additional interactions, although we cannot confirm that is necessary. 

Table 3. Reaction between 1a and 2d with different imidazole derivatives
a
 

Entry Imidazole derivative Conversion to 3ad (%) 

1 bcmim-Cl
b
 N N OH

OO

HO

Cl

 

>99 

2 bcmim 
 

0 

3 Im1 

 

>99 

4 Im2 

 

43 
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 14

5 Im3 

 

40 

6 Im4 

 

36 

7 Im5 

 

92 

8 Im6 

 

89 

9 ChCl 

 

8 

10 AcChCl 

 

11 

a
 Reaction conditions: 1a (0.5 mmol), 2d (0.5 mmol), the corresponding imidazole (10 mol%), 

80 °C, 2 h. Conversion determined by GC analysis. 
b
 The surface area is 0.398 m

2
/g (N2 isotherm 

at 77 K). Thus, 11 mg (10 mol%) of bcmim-Cl represent 0.0044 m
2
 of catalyst area. 

 

 

Scheme 5. Proposed mechanism for the formation of N-allylanilines by allylic substitution of 

alcohols with anilines. 
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CONCLUSIONS 

The use of IOS bcmim-Cl in the allylic substitution of alcohols with anilines meet most of the 

criteria established in the 12 principles of Green Chemistry by Anastas.
1a

 The only waste 

generated in the reaction is water, which is a non-harmful substance (Principle 1: Prevention). 

From the starting materials (alcohol and amine in 1:1: ratio), only water is released (Principle 2: 

Atom economy). Allylic alcohols and anilines do not have a high level of toxicity (Principle 3: 

Less hazardous chemical synthesis). Neither solvents nor auxiliaries are used during the reaction, 

and only ethyl acetate, an environmentally friendly solvent,
60

 is employed to separate the catalyst 

from the crude (Principle 5: Safer solvents and auxiliaries). The reaction is carried out at 

atmospheric pressure and 80 °C (Principle 6: Design for Energy Efficiency). The catalyst is 

formed from renewable materials (Principle 7: Use of renewable feedstocks). No derivatisation is 

needed (Principle 8: Reduce derivatives). A catalyst is used to accelerate the reaction, which, 

additionally, is recyclable (Principle 9: Catalysis). All the substances used in the reaction are 

solids or liquids with high boiling points, and the only gas which can be released is water 

(Principle 12: Inherently safer chemistry for accident prevention). 

To conclude, we have developed a robust, simple and effective process to obtaine allylic anilines 

making use of a metal-free and easily recyclable catalyst, which is synthesised from 

commercially available materials, being possible to scale up the process to multigram scale, and 

with an E-factor of 2.8. This methodology constitutes a sustainable process since only a small 

amount of ethyl acetate is required to separate the product from the catalyst and the only waste is 

water. Thus, the described protocol is appealing to be used in preparative scale, being above 

other previously described methods. Moreover, a variety of anilines in the presence of this 
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catalyst reacted selectively as a nitrogen-nucleophile, independently of the substituents, giving 

exclusively the corresponding N-allylanilines. 

EXPERIMENTAL SECTION 

Reagents and instruments. All commercially available reagents and solvents were purchased 

(Acros, Aldrich, Fluka) and used without further purification. Melting points were determined 

using a Gallenkamp capillary melting point apparatus (model MPD 350 BM 2.5) and are 

uncorrected. 
1
H NMR and 

13
C NMR spectra were recorded at the technical service of the 

University of Alicante (SSTTI–UA), employing a Bruker AC-300 or a Bruker Advance-400. 

Chemical shifts (δ) are given in ppm and the coupling constants (J) in Hz. The conversion of the 

reactions and purity of the products were determined by GC analysis using an Agilent 7820A 

apparatus, equipped with a flame ionization detector and a Phenomenex ZB-5MS column (5% 

PH-ME siloxane): 30 m (length), 0.25 mm (inner diameter) and 0.25 µm (film). Low-resolution 

mass spectra (EI) were obtained at 70 eV with an Agilent 5973 Network spectrometer, with 

fragment ions m/z reported with relative intensities (%) in parentheses. Low-resolution HPLC 

with electrospray ionization (HPLC-ESI) mass spectra were recorded at the technical service of 

the University of Alicante (SSTTI–UA), employing an Agilent 1100 series apparatus with the 

possibility of MS/MS. High resolution mass spectra (IE) were recorded at the technical service 

of the University of Alicante (SSTTI–UA) with an Agilent 7200 Network spectrometer (Q-

TOF). Infrared spectra were recorded with an FT-IR 4100 LE (JASCO, Pike Miracle ATR) 

spectrometer. Spectra were recorded from neat samples and results are given in cm
-1

. Analytical 

TLC was performed on Merck aluminium sheets with silica gel 60 F254, 0.2 mm thick. Silica gel 

60 (0.04-0.06 mm) was employed for column chromatography. P/UV254 silica gel with CaSO4 
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supported on glass plates was employed for preparative TLC. Centrifugation was carried out 

with a Nahita Model 2610 apparatus (4000 rpm). 

Synthesis of 1,3-bis(carboxymethyl)imidazole (bcmim).
54

 A mixture of glycine (100 mmol, 

7.5 g), glyoxal (40% in water, 50 mmol, 5.7 mL) and formaldehyde (36% in water, 100 mmol, 

3.9 mL) was stirred at 95 °C for 2 hours. The mixture was allowed to cool down to room 

temperature and the resulting brown solid was filtered, washed with cold water and dried at room 

temperature to afford the corresponding product as a white solid in 89% yield. 

Synthesis of 1,3-bis(carboxymethyl)imidazolium chloride (bcmim-Cl).
54

 A mixture of 

bcmim (89 mmol, 16.4 g) and concentrated aqueous HCl (196 mmol, 16.2 mL) was stirred and 

refluxed for 30 minutes. Then, HCl was removed under reduced pressure and the resultant solid 

was filtered and washed with acetone and diethyl ether to afford a white solid in 93% yield. 

General procedure for the synthesis of N-allylanilines (3). The corresponding allylic 

alcohol (1, 0.5 mmol), the corresponding aniline (2, 0.5 mmol) and bcmim-Cl (10 mol%, 11.0 

mg, pKa = 1.33)
61

 were placed in a tube provided with a stirring bar. The mixture was stirred at 

80 °C for 2 hours. Then, ethyl acetate was added and the mixture was filtered to separate the 

catalyst, which is insoluble in ethyl acetate. After evaporating the solvent under vacuum, the 

corresponding crude was purified by preparative TLC or column chromatography using mixtures 

of hexane/ethyl acetate. In some cases, the product was obtained pure after evaporation of the 

solvent. In the recycling experiments, the catalyst was separated by centrifugation. After 

separation, the catalyst was washed twice with ethyl acetate and once with diethyl ether. Then, 

the catalyst was dried at 50 °C for 2 hours or at room temperature overnight before the next run. 
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