
Working with OpenCV and Intel Image Processing Libraries.
Processing image Data Tools.

 Faraón Llorens, Francisco José Mora , Mar Pujol, Ramón Rizo and Carlos Villagrá.

Grupo Vgia: Visión, Gráficos e Inteligencia Artificial
Departamento de Ciencia de la Computación e Inteligencia Artificial

Universidad de Alicante
E-03690, San Vicente, Spain

Phone +34 96 590 39 00, Fax +34 96590 39 02
e-mail: mora@dccia.ua.es

We will provide an overview of Intel OpenCV and Image
Processing Libraries. We present an application of real-time
gesture recognition using the libraries (segmenting a
foreground object, creating Motion History Image (MHI),
updating the intensity gradients, and recovering directional
motion information).
Some times most companies spent a lot of time and money

implementing those well-known techniques. OpenCV and
IPL implement a huge amount of standard and advanced
image processing techniques. With OpenCV we now have
access to a well implemented version that is fast and
reliable.

1. INTRODUCTION

 OpenCV is computer-vision library for extracting and
processing meaningful data from images. This library needs
other Library, the Intel Image Processing Library. IPL provides
a set of low-level image manipulation and OpenCV
implements techniques and functions in the areas of
object/human/face segmentation, detection, recognition, and
tracking, as well as camera calibration, stereovision, and
2D/3D shape reconstruction.
OpenCV is an open-source release that includes C source

code for all of the library’s functionality, it gives us confidence
in the code and we have know we can make local
modifications if necessary.

Developed by the Intel research group, OpenCV is freely
available at www.intel.com/research/mrl/research/opencv/ and
has royalty free redistribution license. Anyone interested in
joining the user group needs to register with Yahoo groups at

http://groups.yahoo.com/ and then can subscribe by sending
email to OpenCV-subscribe@yahoogroups.com.

Intel has developed a uniquely decentralized research model
with over 80 labs situated around the world. The bulk of the
OpenCV software team resides Intel's Software Development
Center in Nihzniy Novgorod, Russia. Established in 1999, the
center currently employees over 100 computer research
scientists and engineers working in areas such as computer
graphics, vision, media, Bayesian networks, compilers and tools
research. The support and new versions of the library are
guaranteed.
OpenCV currently is supported to run on Windows and Linux

operating systems. We can use the library with programming
languages, for example Visual Basic or Java, and applications
like MathLab.
There are other libraries developed for the Intel group. For

example the Signal Processing Library is a library for work
with audio signal, and Intel Vtune Performance analycer to
calculate the time-codes.
IPL and OpenCV reference manuals detailed describe

structure, operation ands functions of the libraries.

2. INTEL IMAGE PROCESSING LIBRARY V2.5

The Intel Image Processing Library provides a set of low-level
image manipulation functions in standard DLLs and static
libraries form. The functions are optimized for Intel
Architecture processors, and are particularly effective at taking
advantage of MMX™ technology, the Streaming SIMD
Extensions (SSE) and SSE-2.. Currently, versions have been
developed for the Intel486™ and compatible processors, the
Pentium® processor, the Pentium Pro processor, the Pentium
processor with MMX technology, the Pentium processor, the

http://www.intel.com/research/mrl/research/opencv/
http://groups.yahoo.com/
mailto:OpenCV-subscribe@yahoogroups.com

Pentium III processor, and, most recently, the Pentium 4
processor. A separate DLL is available for each processor.
The library contains functions that perform filtering,

thresholding, and transforms (FFT, DCT, geometric), as well as
arithmetic and morphological operations. The library uses a
flexible image format, supporting channels of 1-, 8-, 16-, and
32-bit integer pixels, as well as 32-bit floating point pixels, with
an arbitrary number of channels per image. Conversion to and
from the Windows* DIB (device independent bitmap) image
format is supported, as are conversions between color and gray-
scale.
Major changes from the Image Processing Library 1.0 include

many more geometric functions, mask region of interest,
floating point support, example code, and color space
conversions.

Changes since version 2.2 include further optimization for
Pentium III processors and support for the Pentium 4 processor.

Additional information on this software as well as other Intel
Performance Libraries is available at
http://developer.intel.com/software/products/perflib/.

Intel® Image Processing Library (included in OpenCV

WinOS download):
• Image creation and access (same image header

used for both libraries).
• Image arithmetic and logic operations.
• Image filtering.
• Linear image transformation.
• Image morphology.
• Color space conversion.
• Image histogram and thresholding.
• Geometric transformation (zoom-decimate,

rotate, mirror, shear, warp, perspective
transform, affine transform).

• Image moments.

3. THE OPENCV LIBRARY

OpenCv contains more than 500 funtions. While the API of
the library is C/C+, the bulk of the libray is made up of C
functions and the objects themselves are mostly self contained.

 Figure 1. Some example areas would be Human-Computer
Interaction (HCI), Motion Tracking , Face Recognition,

Gesture Recognition and Segmentation and Recognition.

OpenCV is aimed at making computer vision accessible to
programmers and users in the area of real-time human-computer
interaction and mobile robotics. Thus, the library comes with
source code and hand-tuned assembly language binaries
optimized fot Intel processors, so that users can both leran from
the library and make use of its performance.
When you build and run an application using OpenCV, a built-

in DLL switcher is called at run time to automatically detect the
processor type and load the appropriate optimized DLL for that
processor. If the processor type cannot be determined or if the
appropriated DLL is not available, an optimized C code DLL is
used. Included in the OpenCv download is the optimized Intel
Image Processing Library (IPL) on wich OpenCv partially
depends. Although it is included with OpenCV, you can also
get IPL and other libraries for signal processing, matrix math,
JPEG and pattern recognition at
http://developer.intel.com/vtune/perflibst/.

OpenCv ships with HTML overview and a detailed manual in
Pdf format. Added to this are many source-code examples,
detailed papers, and tutorials on differents topics. The source-
code examples currently include camera calibration, face
traking, kalman filter, condensation filter, face recognition,
optical flow, and morphing and image to produce intermediate
views. An interpretative C prototyping environment for
OpenCv and IPL is also available for download.

OpenCV addresses the areas of object/human/face

segmentation, detection, recognition, and tracking, as well as
camera calibration, stereovision, and 2D/3D shape
reconstruction. A full matrix algebra package is also included in
the library to support algorithms in these areas.
Also included in the library are routines in:

• Image functions: Creation, allocation, destruction of
images. Fast pixel access macros.

• Data Structures: Static types and dynamic storage.
• Contour Processing: Finding, displaying,

manipulation, and simplification of image contours.
• Geometry: Line and ellipse fitting. Convex hull.

Contour analysis.
• Features: 1st & 2nd Image Derivatives. Lines: Canny,

Hough. Corners: Finding, tracking.
• Image Statistics: In region of interest: Count, Mean,

STD, Min, Max, Norm, Moments, Hu Moments.
• Image Pyramids: Power of 2. Color/texture

segmentation.

http://www.intel.com/software/products/perflib/
http://developer.intel.com/vtune/perflibst/

• Morphology: Erode, dilate, open, close. Gradient,
top-hat, black-hat.

• Background Differencing: Accumulate images and
squared images. Running averages.

• Distance Transform: Distance Transform
• Thresholding: Binary, inverse binary, truncated, to

zero, to zero inverse.
• Flood Fill: 4 and 8 connected
• Camera Calibration: Intrinsic and extrinsic,

Rodrigues, un-distortion, Finding checkerboard
calibration pattern

• View Morphing: 8 point algorithm, Epipolar
alignment of images

• Motion Templates: Overlaying silhouettes: motion
history image, gradient and weighted global motion.

• CAMSHIFT: Mean shift algorithm and variant
• Active Contours: Snakes
• Optical Flow: HS, L-K, BM and L-K in pyramid.
• Estimators: Kalman and Condensation.
• POSIT: 6DOF model based estimate from 1 2D view.
• Histogram (recognition) Manipulation,

comparison, backprojection. Earth Mover's Distance
(EMD).

• Gesture Recognition: Stereo based: Finding hand,
hand mask. Image homography, bounding box.

• Matrix: Matrix Math: SVD, inverse, cross-product,
Mahalanobis, eigen values and vectors. Perspective
projection.

• Eigen Objects: Calc Cov Matrix, Calc Eigen objects,
decomp. coeffs. Decomposition and projection.

• embedded HMMs: Create, destroy, observation
vectors, DCT, Viterbi Segmentation, training and test.

• Drawing Primatives: Line, rectangle, circle, ellipse,
polygon. Text on images.

• System Functions: Load optimized code. Get
processor info.

• Utility: Abs difference. Template matching. Pixel
order<->Plane order. Convert Scale. Sampling lines.
Bi-linear interpolation. ArcTan, sqrt, inv-sqrt,
reciprocal. CartToPolar, Exp, Log. Random numbs.
Set image. K-Means.

4. WORKING WITH OPENCV AND IMAGE
PROCESSING LIBRARIES.

We will present a real-time application that detects motions.
This application has built on a standard Pc platform employing
optimized OpenCv and IPL routines.

For more details of this algorithm and code just described, go
to “http://www.cse.lehigh.edu/FRAME/
Davis/DavisBradski.htm” In listings you can se that all
functions and types of the OpenCV start with “cv” and Image
Processing Library with “ipl”. We construct a more localized
motion characterization for the Motion History Image that
extract motion orientations in real-time.

Figure 2. Motion History Image for arm-streaching mvement

generated from image differences.

Basically, directional motion information can be recovered

directly from the intensity gradients with the MHI. In addition,
we provide a few simple motion features using these
orientations. Figure 2 is a flowchart of this algorithm.

Figure 2: FlowChart algorithm.

For this discussion, assume the camera is stationary. Althought
there are many more sophisticated techniques of segmenting a
foregroung object from the learned background, in this example
we label as potention foreground those pixel that are a set
number standard deviations from the mean color background.
When a new video image comes in, the foreground is separated
from the background using background substraction. In order to
do this, we need to first learn the background model. The
learned background model will consist of the means and
standard deviations of each pixel over many frames when no
foreground object is present. Listing 1 shows the routine that
does this. The pixel values and squared values of pixels are
assumed into floating-point images and these images are
divided by the number of video frames (here 45 frames or 1.5
seconds at 30 frames/sec) after collection is finished. This
yields the mean and standard deviation of each pixel. Since
IstdFP will be used as the threshold difference from Imean[x,y]
at wich a future pixel at x,y will be declared to be a foreground
pixel.

void captureBackground(IplImage
*IvidIm,
 IplImage *IstdFP, IplImage
*Iu,
 IplImage *Istd)
{
int height = IvidIm->height;
int width = IvidIm->width;
int I;

//Create background mask (find mean and
variance of color background):
IplImage *Imean =
iplCreateImageHeader(3. 0,
IPL_DEPTH_32F, "RGB", BGR",
IPL_DATA_ORDER_PIXEL, IPL ORIGIN_TL,
IPL_ALIGN_QWORD,width, height, NULL,
NULL, NULL, NULL);
iplAllocateImageFP(Imean, 1,0.0);
int len = width*height*3;

//take statistics over 45 frames (~1.5
sees)
for(i = 0: i<45: i++)
 {
 grabIm(IvidIm);//Get an image into
IvidIm
 cvAcc(IvidIm, Imean);//Accumulate it
into
 // Imean
 cvSquareAcc(IvidIm,
IstdFP);//Accumulate
 // squared image into IstdFP
 }
//find mean and vars
//meanI
iplMultiplySFP(Imean, Imean,
(float)1.0/i);

//meanI^2
iplMultiplySFP(IstdFP, IstdFP.
(float)1.0/i); IplImage* ImeanSqr =
iplCloneImage(Imean);
iplSquare(ImeanSqr, ImeanSqr);

//Ivar = meanIA2 - (meanI)^2
iplSubtract(IstdFP, LneanSqr, IstdEP);
iplDeallocate(ImeanSqr, IPL_IMAGE_ALL);

//IstdFP = sqrt(Ivar)
cvbSqrt((const
float*)IstdFP->imageData,
 (float*)IstdFP->imageData, len);

//since we use Istd as a threshold,
enforce that no threshold is too small
float *pIstdFP = (float
*)IstdFP->imageData;
for(i=0: i<len: i++)
 {
 if (*pIstdFP < 0.3) *pIstdFP = 0.3;
 pIstdFP++;
 }

//meanI^2
iplMultiplySFP(IstdFP,
IstdFP.backThresh);

//convert to 8u images
convert32Fto8U (Imean, Iu);
convert32Fto8U(IstdFP,Istd);
iplDeallocate(Imean, IPL_IMAGE ALL);

Listing 1.

Collect background mean and std of each pixel for background
differencing code.

After the mean and the standard deviation of the color

background are calculated, the code then creates a binary
mask of all possible regions are those pixels that deviate
more than a given number of standard deviations from
the mean values. Image dilation is used to help cose holes
in the foreground regions caused by image noise as in
Listing 2.

//Ii Video input image BGR
//Im Mean image of background BGR
//Is Standard deviation of background from
mean BGR
//Io Output image -- Grayscale
//Iot Temporary output image -- Grayscale
//Itl,It2 Temporary images of same size,

 depth and number of channels
BGR

//numIterations Number of dialations to
preform on foreground
void backsubCVL(IplImage *Ii, IplImage *Im.
IplImage *Is, IplImage *Io,
IplImage *Iot, IplImage *Itl, IplImage
*It2, int numIterations)

{
//Get 'Ii-Im
iplSubtract(Ii,Im,Itl);
iplSubtract(Im,Ii,It2);
iplAdd(Itl,It2,Itl);

//Get Raw foreground = ~Ii-Im, > Is ?
255: 0;
iplSubtract(Itl,Is,Itl);
iplThreshold(Itl, Itl, 1);
iplColorToGray(Itl, Io);
iplThreshold (Io , Iot , 1);

//Fill up holes in the foreground
iplDilate(Iot,Io, numIterations);
}

Listing 2.
Extract the foreground and fill in holes code.

 The foreground object is layered onto the “time Motion

History Image” (tMHI). Image gradients of the tMHI are
calculated, the gradients directions indicate movement patters
of the foreground object. In the OpenCv library, updatinf tMHI
image is wrapeped into one function call, cvUpdate
MHIByTime(…). The image gradients are calculated from the
MHI via the call cvCalMotionGradient(…) this yields
directions of motion encoded implicity by the tMHI. Finally the
code computes the global direction of movement via the call
cvCalcglobalorientation(…). These calls are show in Listing 3.
Figure 4 depicts the process of going from the MHI, to a
gradient representation to the global motion in that region.

//UPDATE THE MOTION HISTORY IMAGE
cvUpdateMHIByTime(IsilIm, IrhiIm,
timestamp, MHI DURATION):

//CREATE MOTION GRADIENT ORIENATIONS
FROM THE tMHI

cvCalcMotionGradient(IrhiIm, Imask,
Iorient, 3, MAX_TIME_DELTA,MIN
TIME_DELTA)

//CALCULATE THE MOTION ORIENTATION
globalDir = cvCalcGlobalOrientation (
Iorient, Imask, ImhiIm,
timestamp,MHI_DURATION):

globalDir = 360.0 - globalDir:
//Circularly rotate angle since TL
origin
rather //than BL default

Listing 3.
Update tMHi, Calculate the Motion Gradient and global motion

orientation code.

Figure 4. From tMHI to a gradient representation.
(a) tMHI (b) Gradients (c) Global Motion

Table 1 list code timing for some of the IPL-OpenCv functions

invoved in this process. The timings are in form of clock cycles
per pixel, and speed-up factor is going from optimized C code
to optimized assembly is show in this column. Thus, We work
with 160x120 video images at 30Hz on 500MHz Pentium III.
Intel´s Vtune Performance analycer code was used to record the
performance of the functions using both the optimised C (and
assembly versions of the libraries). Vtune rapidly samples the
application and produces a report aas to the precent of time
spent in each module.

Function Optimized
C

Optimized
MMX

Speed-
up

cvAcc 7.2 2.4 3.02
CvSquareAcc 9.9 2.6 3.77
CvSqrt 24.4 8.6 2.84
CvUpdateMHIByTime 13.0 8.5 1.63
CvCalcMotionGradient 193.2 82.9 2.33
CvCalcglobalOrientation 23.7 21.3 1.11

Table 1. Code Timing for some of the OpenCv functions

5. USING OPENCV AND IPL WITH DIFERENT
OPERATING SYSTEMS AND PROGRAMMING

LANGUAGES

IPL and OpenCV is supported to run on Windows
98/Millenium/NT/2000/XP. On Linux or other operating
systems the source code should build. Actually, There isn’t
Official Linux Support.

Objects and functions are Externed as C to avoid name

mangling, allowing OpenCV to be used with Visual Basic and
Java. Object-oriented design is mostly intented to take place at
COM or CORBa level for use in applications.

It’s easy and quickly work with IPL and OpenCV libraries in

MsWindows with Microsoft Visual C++, Borland C++ and
other C++ compilers. We can work with other programming
languages but it’s more difficult, mainly in OPenCV. IPL can
be easily used with Borland Delphi to.

In addition, the new 2.1 release includes an optional interface

so all OpenCV functions can be imported into Matlab, one of
the most widely used software development tools for computer
vision research.

Hawk is an application distributed with OpenCV that allows

write and run short scripts in C and see graphical results. It is
application that integrates C iterpreter (modified version of EiC.
Original EiC site is located at http://www.kd-dev.com/~eic/),
simple graphic library (highgui) and OpenCV+IPL (but,
actually, any shared library can be attached to the application as
plugin).

We can work jointly with other libraries, for example

Microsoft Vision SDK or ImageMagick . Microsoft Vision
SDK is a library for writing programs to perform image
manipulation and analysis on computers running Microsoft
Windows operating systems. If users need to read and write
other file formats, it is possible to using a library named
ImageMagick

6. CONCLUSIONS

OpenCV and IPL implement a huge amount of standard and
advanced image processing techniques. It’s easy and cheap to
use these tools. IPL and OpenCV is supported to run on
Microsoft Windows and Linux operating Systems. We can use
these libraries with differents programming languages and tools
such as Microsoft Visual C++, Borland C++, Java, Borland
Delphi, Visual Basic, MathLab, etc… We quickly can use fast
and reliable implemented functions with IPL and OpenCV.

7. ACKNOWLEDMENTS

This work has been supported by the Spanish Comisión
Interministerial de Ciencia y Tecnología (CICYT),
project number TIC2001-0245-C02-02

8. REFERENCES

[1] Intel Image Processinf Library Reference Manual. 2001

[2] Intel Open Computer Vision Library Reference Manual.

2001

[3] Bradski, G. and Davis, James. “Real-time Motion

Template Gradientes using Intel CVLib”. ICCV'99
 http://www.cse.lehigh.edu/FRAME/Davis/DavisBradski.ht

m

[4] Bradski, G.,B-L Yeo, and M.Yeung. “Gesture for Video

content navigation” SPIE ’99, 356-24 s6, 1999.
[5] Bradski, G. “Comeputer Vision Face Trackingfor use in

perceptual user interface”. Intel Technology Journal.
http://developer.intel.com/technology/itj/q21998/articles/ar
t_2.htm. Q2. 1998

[6] P. Fieguth and D. Terzopoulos, “Color-based tracking
 of heads and other mobile objects at video frame rates,” In

Proc. Of IEEE CVPR, pp. 21-27, 1997.
[7] D. Comaniciu and P. Meer, “Robust Analysis of Feature

Spaces: Color Image Segmentation,” CVPR’97, pp. 750-
755.

[8] M. Kass, A. Witkin D.Terzopoulos, “Snakes: Active
contour Models,” Int. J. o f Computer Vision (1) #4, pp.
321-331, 1988.

http://www.kd-dev.com/%7Eeic/
http://www.cs.toronto.edu/iccv99/
http://www.cse.lehigh.edu/FRAME/Davis/DavisBradski.htm
http://www.cse.lehigh.edu/FRAME/Davis/DavisBradski.htm
http://developer.intel.com/technology/itj/q21998/articles/art_2.htm
http://developer.intel.com/technology/itj/q21998/articles/art_2.htm

	1. INTRODUCTION
	2. INTEL IMAGE PROCESSING LIBRARY V2.5
	3. THE OPENCV LIBRARY
	4. WORKING WITH OPENCV AND IMAGE PROCESSING LIBRARIES.
	5. USING OPENCV AND IPL WITH DIFERENT OPERATING SYSTEMS AND PROGRAMMING LANGUAGES
	6. CONCLUSIONS
	7. ACKNOWLEDMENTS
	8. REFERENCES

