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Abstract  In an open system, each disequilibrium causes a force. Each force causes a flow process, these being 
represented by a flow variable formally written as an equation called flow equation, and if each flow tends to 
equilibrate the system, these equations mathematically represent the tendency to that equilibrium. In this paper, the 
authors, based on the concepts of forces and conjugated fluxes and dissipation function developed by Onsager and 
Prigogine, they expose the following hypothesis: Is replaced in Prigogine’s Theorem the flow by its equation or by a 
"flow orbital" considering conjugate force as a gradient. This allows to obtain a dissipation function for each flow 
equation and a function of orbital dissipation. 
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1. Introduction 
For the General Systems Theory, the concept of order is 

a relative concept. The essence of the system is always an 
ordination class. In general, the subject conceived as order, 
that which harmonizes with their cognitive processes, 
produced by the dilemma of whether it refers to a state S 
of System H or Subject’s capacity as observer to 
recognize it. One thing in itself means nothing. It is the 
relationship of the subject with it which gives meaning. 
Therefore, disorder, that is, the total absence of any kind 
of order, not have any logical significance. To say that a 
system H is disordered means that the subject does not 
have sufficient information to specify in what order is. In 
the words of the Mathematical Theory of Information 
(Shannon, 1948), one could say that entropy measures 
how much information the subject needs to understand 
what is the order that has a system that, for the moment, it 
seems messy. The difference or similarity leading to order 
are concepts prior to its own idea. 

The type of equilibrium that reaches the H system and 
its maintenance depends heavily on its relationship with 
H' and H'' (environmental stimulus and response 
respectively). Systems do not suffer processes but are the 
forms taken by the processes as they are only abstractions 
in the mind of the subject of what remains relatively 
constant in a process of movement and transformation. 
There is no permanent system. There are processes 
obviously being irreversible, which constitute the history 
of the H system, involving changes in structure and 
information. That is, H carries its own story in the form of 
structure and "altered" function with respect to which 

possess "if it had not happened." In system H, the past is 
assimilated into the memory structure. The subject follows 
the processes by observing the structure, which is nothing 
more than a stage in the space-time continuum. Complex 
structural causal systems, are not balanced systems and 
therefore, the processes are not balanced in turn. 

Consider a system [ ]0 ,H t t  consisting of two states 

[ ] [ ]1 0 2 0, , ,S t t S t t . Consider that states are given the 

probability distributions [ ] [ ]1 0 2 0, , ,S t t S t t  found with 

energies 1 2,i iE E  that are 1 2, .i ip p  The corresponding 
entropies are: 

 1 1 2 2
1 2log logi i i i

i i
k p p k p pΣ = − Σ = −∑ ∑  (1) 

where K is the Boltzmann constant. The energies are: 

 1 1 1 2 2 2,i i i i
i i

E p E E p E= =∑ ∑  (2) 

Considering the sum of constant energy: 

 1 2E E E+ =  (3) 
The entropy is additive: 

 1 2Σ + Σ = Σ  (4) 
Therefore: 

 
( )

1 2 1 2 1 2

1 1 1 1 1 22E E E E E EE E

∂Σ ∂Σ ∂Σ ∂Σ ∂Σ ∂Σ ∂Σ
= + = + = −

∂ ∂ ∂ ∂ ∂ ∂∂ −
 (5) 

and in accordance with the thermodynamics (Jou &, 
Llebot, 1989; Volkenshtein, 1981) 
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 ( )1 2
1 1 2

1 1k
E T T

β β∂Σ
= − = −

∂
 (6) 

being 1 2,β β  two undetermined Lagrange multipliers and 
1 2,T T  the temperatures of states. If the system is not 

balanced, facilities, including entropy, are time dependent. 
During the contact of two states, having, for example, 
different temperatures, elapses the transfer of any physical 
quantity including, for example, energy. 

2. Flow Process  
We define flow process, as the movement of matter or 

energy between stimulus environment H' and states of 
system H, among these, or between those states and 
response environment H’’. Therefore, a process flow is 
necessarily response, transition, internal transition, or 
internal response, but not in the reverse case. Any kind of 
these processes need not necessarily be a flow process. 

2.1. Dissipative Function in Flow Processes 
Due to this displacement, probability distributions will 

change as follows: 

 [ ] [ ] [ ]0 0 0, , log ,i i
i

t t K p t t p t tΣ = − ∑  (7) 

In the case of a flow of energy 

 
1 1

1 1 2
1 1d d d d

dt dt dtd T T
Σ Σ Σ Σ = = − 

Σ  
 (8) 

The general process of flow of energy is given by the 
following formula: 

 
1

1E
dEP
dt

=   (9) 

And there exists a generalized force associated with the 
flow process, which is given by: 

 1 1 2
1 1

E
F

T T
= −



 (10) 

Any process flow for a energetic or material variable X, 

[ ] [ ] [ ] [ ] [ ] [ ]
[ ] [ ]( )

0 0 0 0 0 0

0 0 0

, , , , , ,

, , ,

X t t Z t t X t t S t t X t t Y t t

t t T t t P X t tΨ

∈ ∧ ∧

⊂ <
 

implies the existence of one or more conjugated forces 
[ ]0( , )F X t t



 whose mission is to change the structure. 

Without the existence of [ ]0( , )F X t t


 does not exist 

[ ]( )0 ,P t tΨ Χ . There is a relationship between 

[ ]0( , )P X t tΨ  and [ ]0( , )F X t t


. A gradient ∆ between two 
points appears, said gradient decreases as time passes, 
resulting [ ]( )0 ,P X t tΨ  in increasingly lower. Annulled 

[ ]( )0 ,F X t t


, disappears [ ]( )0 ,P X t tΨ . The balance will 
be restored. If the gradients are small, the processes are 
acceptably linear. For large gradients, the relationship 
between flows and forces, ceases to be linear. Physically, 

large gradient means large imbalance, and conversely, if 
the gradients are small, the relations between flows and 
forces tend to be linear. Each imbalance creates a force, 
each force causes a flow and each flow tends to balance 
the system. 

A flow depends not only on its conjugate force but that 
can depend on any other force present in the system, 
which in turn is the conjugate force to some other flow. 
When the balance is disturbed because an imbalance 
between two or more points in the system appears, are 
originated many flows, which tend to restore balance to 
the system, and these flows are not entirely independent of 
each other, because in principle, all these flows and 
associated forces are related. 

If the system is characterized by the existence of many 
variables, the entropy change in time is represented as a 
sum of products of generalized flows, and the forces 
conjugate to these flows: 

 [ ]( ) [ ]( )0 0, ,
i

d P X t t F X t t
dt Ψ
Σ
= ⋅∑



 (11) 

The entropy change in the system H is composed of 
entropy production Hd Σ  within system H, entropy flow 

'Hd Σ  from the stimulus environment H’ and entropy flow 

''Hd Σ  that goes from system H to the response 
environment H”. Therefore: 

 ' ''H H Hd d d dΣ = Σ + Σ + Σ   (12) 

According to the second law of thermodynamics 
0Hd Σ ≥ , and not being given the signs of 'Hd Σ  and 

''Hd Σ . In case that H is a closed system, that is, when 
only have internal transition processes 

' '' ' ''0H H H Hd d d dΣ + Σ = ⇒ Σ = − Σ , and therefore 
.Hd dΣ = Σ  That is, entropy is produced by the energy-

material exchange between two states of the state space of 
H and as a result, sooner or later an energy-material 
balance is restored. In this case, and only in this, the 
equation (11) represents the call Prigogine dissipation 
function that is represented by .σ  That is, this function 
represents the rate of production of entropy per unit 
volume dV. 

According to the second law of thermodynamics: 

 0Hd dV
dt

σ
Σ
= ⋅ ≥∫  (13) 

and according to (11): 

 [ ]( ) [ ]( )0 0, ,
i

P X t t F X t tσ Ψ= ⋅∑


 (14) 

being [ ]( )0 ,P X t tΨ  internal transition processes. 
Prigogine (1955) postulated that if external forces 

acting on the system are held constant and the imbalance 
that occurs in the system is small, so that the relationship 
between the flow [ ]( )0 ,P X t tΨ  and conjugate force 

[ ]( )0 ,F X t t


 is linear, H tends to a steady state in which 
the entropy production is minimal. However, we can say 
the following: 
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1. Validity of this principle is restricted if and only if H 
is a closed system. Can be abstracted and considered 
initially approaches to Prigogine’s principle obviating the 
presence of H 'and H''. 

2. If H is a closed system, the validity of this principle 
has a second constraint: be valid only for situations close 
to equilibrium. When processes are away too, a crisis is 
reached and the system structure changes. 

3. In complex systems (ecological, socio-economic, 
etc.), the relationship between [ ]( )0 ,P X t tΨ  and 

[ ]( )0 ,F X t t


 is not linear as required by the principle of 
Prigogine. 

4. There are situations where even though the system is 
continuously organized, a continuous increase is observed 
in the production of entropy. These are situations in which 
H does not tend to minimize σ . 

2.2. Conjugation of Flows and Generalized 
Forces 

Generalized flows [ ]( )0 ,P t tΨ Χ depend on the 

generalized forces [ ]0( , )F X t t


and vice versa. In a case of 
a social model of demographic type, flows of increase or 
decrease of a population depend on the differences, or 
gradients of population. In the case of a bioenergetics 
model, the flows of energy depend on energy gradients 
and whether the biogeochemical model, flows of matter 
depend on the concentration gradients (Jorgensen, 1988). 
In the ideal case of a closed system and with linear 
approximation 

 [ ]( ) [ ]( )0 0
1

, ,
n

i ij j
j

P X t t L F X t tΨ
=

= ⋅∑


 (15) 

being ijL  the phenomenological coefficients. In the 
vicinity of equilibrium in a closed system, and according 
to Onsager’s Theorem (Volkenshtein, 1981), the 
phenomenological coefficients form a symmetric matrix, 
ie .ij jiL L=  

Let us assume the case formed by a state and two 
flows [ ]( ) [ ]( )1 0 2 0, , ,P X t t P X t tΨ Ψ , with two conjugate 

forces [ ]( ) [ ]( )1 0 2 0, , , .F X t t F X t t
 

 then: 

 
[ ]( ) [ ]( ) [ ]( )
[ ]( ) [ ]( ) [ ]( )

1 0 11 1 0 12 2 0

2 0 21 1 0 22 0

, , ,

, , ,

P X t t L F X t t L F X t t

P X t t L F X t t L F X t t
Ψ

Ψ

= +

= +





 

 

 (16) 

According to (15) then: 

 
[ ]( )

( ) [ ]( ) [ ]( )
[ ]( )

2
11 1 0

12 21 0 2 01
2

22 2 0

,

, ,

, 0

L F X t t

L L F X t t F X t t

L F X t t

σ =

+ +

+ ≥



 



 (17) 

Dissipation function σ  is positive for whatever the 
nonzero values of conjugate forces and vanishes only if 

[ ]( ) [ ]( )1 0 2 0, , 0.F X t t F X t t= =




 Therefore: 

 11

22

0
0

L
L

> 
> 

 (18) 

and  

 ( )212 21 11 224L L L L+ <  (19) 

As the phenomenological coefficients are symmetrical: 

 2
12 11 22L L L≤   (20) 

The sign of the non-diagonal coefficient 12L  can be any. 
In the general case 

 0,jj ii jj ijL L L L> >   (21) 

Condition 0σ ≥  relates entirely to the sum 
[ ] [ ]0 0, ,i i

i
F X t t P X t tΨ      ∑ , as individual members of 

it can be negative. This means that there cannot be flow 
[ ]0 ,iP X t tΨ     separately since 

[ ] [ ]0 0, , 0.i iF X t t P X t tΨ    <     In other words, it would 
mean that the flow would contradict the Second Law of 
Thermodynamics. However, due to the conjugation with 
other flow processes have positive values in the open 
system [ ] [ ]0 0, , 0,j jF X t t P X t tΨ    >     such flow may 
inconceivable in the closed system. Only the condition 
must be fulfilled: 

 
[ ] [ ]
[ ] [ ]
0 0

0 0

, ,

, ,

j j

j i i i

F X t t P X t t

F X t t P X t t

Ψ

≠ Ψ

      

   >    
∑  (22) 

Thermodynamically, the entropy production in an open 
or semi-open system, in principle, ensures the existence of 
processes that are impossible in closed systems. Fluxes 

[ ]0 ,iP X t tΨ     and conjugate forces [ ]0 ,iF X t t    can be 
both scalar and vector. 

2.3. Flow Variable and Flow Equation 
Let us assume a causal system, modeled by a set of 

ordinary differential equations { } 1' n
i iy =  representing the 

states of H and therefore is called state equations. If 
( )1 2' , ,...,i i i iny f= Ψ Ψ Ψ  to variables { }ij j

Ψ  are 

designated flow variables (Forrester, 1961; Usó-
Domènech et al, 1995, 1997a) and represent in 
mathematical symbolic language, a flow process. In turn, 
each flow variable depends on a set of variables, namely: 

 ( )1 2, ,...,ij nF φ φ φΨ =  (23) 

This equation ijΨ for the dependence of the flow 
variable respect to other variables of system H, is called 
flow equation and variables 1 2, ,..., nφ φ φ  are called 
generating variables of flow equation. Therefore, any flow 
process [ ]0 ,P X t tΨ     will be represented mathematically 
in the form of flow equation in the manner expressed in 
(23). Likewise, the conjugate force [ ]0 ,F X t t    will be 

represented as a gradient ( )X∆ . It follows that equation 
(15) is expressed as 

 ( ) ( )
1

n

i ij j
j

X L X
=

Ψ = ⋅∆∑  (24) 
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and Prigogine's theorem (14) take the form 

 ( ) ( )
i

X XσΨ = Ψ ⋅∆∑  (25) 

σΨ  being dissipation function of the flow equations. 
In particular, for any flow iPΨ  (i = 1,. .., n flows of 

energy-material magnitude X), the dissipation function of 
flow equation that represents it, is expressed as 

 ( ) ( ); 1,...,i i iX X i nσ = Ψ ⋅∆ =  (26) 

2.4. Synonymy Relation in Flow Equations 
Let [ ]0 ,P X t tΨ     be a given flow process of an 

energy-material variable X, defined on a system H. It is 
assumed that this process can be defined by w flow 
equations ( ) ( ) ( ), ,...,X X Xα β ωΨ Ψ Ψ  (Usó-Domènech 
et al, 1995, 1997b, 2000; Villacampa et al. 1999). We can 
define the following relationship: ( )i XΨ  and ( )j XΨ  

are synonymous flow equations ( ) ( )i jX S XΨ Ψ , if they 

describe the same flow process [ ]0 ,P X t tΨ    . 
Usó-Domènech et al., (1997b) and Villacampa et al., 

(2000) demonstrate the existence of an equivalence 
relation on the relationship of synonymy S, and therefore 
an equivalence class C. 

1. Two equations of the same flow process, 
[ ]0 ,P X t tΨ    , ( )i XΨ  and ( )j XΨ  are intrinsic 

synonymous flow equations ( ) ( )inti jX S XΨ Ψ if its 
respective generating variables are the same, changing 
only at least one of their transformed functions (Usó-
Domènech et al., 1995, 1997a,b, 2000) and equation has the 
same number of elements. 

2. Two equations of the same flow process, 
[ ]0 ,P X t tΨ    , ( )i XΨ  and ( )j XΨ  are lengthened 

synonymous intrinsic flow equations ( ) ( )inti e jX S XΨ Ψ  
if its respective generating variables are the same, 
changing only at least one of their transformed functions 
not having the same number of elements in the equation. 

3. Two equations of the same flow process, 
[ ]0 ,P X t tΨ    , ( )i XΨ  and ( )j XΨ  are extrinsic 

synonymous flow equations ( ) ( )i ext jX S XΨ Ψ
 if their 

respective generating variables are different, regardless of 
whether they have the same number of elements the flow 
equation 

2.5. The Generative Grammar GF 
Let us consider a set of primitive p-symbols or 

variables. Consider the vocabulary developed by the GT 
grammar and denote by ρ the corresponding symbols of 
the vocabulary. Then we define the grammar of the flow 
equations in the following terms: 

a) Initial symbol: Ψ 
b) Terminal vocabulary: defined by the vocabularies 

associated to the group of considered variables 

{ } { }, ......ji
x x xi i i

V ρ ρ= . 

c) Auxiliar vocabulary: defined by { } 1,2,..i i n=Ψ , with 

the mathematical operations ⊗={ }+ −, ,:,/ . 
d) Grammar rules: they define the composition to 

generate the words and flow equations (sentences). In 

Figure 1 it is shown the corresponding developed rules.

 
Figure 1. Rules for the generative grammar of flow equations 
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The GF grammar will generate the L(GF) language or 
the language of flow equations. The L(GF) language is a 
formal language because of the following properties: 

a) There exists primitive symbols (vocabularies of the 
variables or lexicon). 

There exist complex expressions or formulas (flow 
equations)  

 1 2 ... .nρ ρ ρΨ = ⊗ ⊗ ⊗  

Each word is a consequence of one or more symbols 
(combination process). 

It is also easy to demonstrate that GF is a non-reductive 
and free-context grammar (Gladkij and Mel'Cuk, 1972). It 
is possible to generate words (chains) in this grammar 
with the property of derivability 

2.6. Orbital of Determination of Flow 
Equations 

The same flow process [ ]0 ,P X t tΨ     may be defined 
by a set of intrinsic synonymous flow equations 

( ){ }; 1,...,i X i nΨ = . This set, generated by generative 
grammar GF will have equiprobability condition in each of 
its elements, when they are generated. The number flow 
equations of set, denoted q, depend of modeler and 
experimental data. Thereafter, is generated a 
recogniscibility process, in which a small number of flow 
equations (w) will be accepted in terms of their 
"correction". The rest of them, q-w, be "wrong". Therefore, 
we can establish the following criteria for recognizability 
(Usó-Domènech et al., 1999a; Villacampa and Usó-
Domènech, 1999a,b; Villacampa et al., 1999a,b): 

1) RGF1 criteria, called the maximum adjustment, based 
on the statistical coefficient of determination (Usó-
Domènech et al., 1997a,b; Villacampa et al., 1999a). 
Through an iterative process of searching for the "best" fit 
of the experimental data from a set of equiprobable flow 
equations. If it has come to an equation 

( ) ( ){ }1 iX XΨ ∈ Ψ  with a coefficient of determination r1, 
may be always find another flow equation whose 
coefficient of determination is r2, with r2> r1. The diagram 
of the recognoscitive process RGF1 is shown in Figure 2. 

EXPERIMENTAL 
DATA

Ψi Ψj

coefficient of regression  

ri

coefficient of regression  

rj

if ri>rj?

NO

Owe I store the 
sentence?

YES

file of synonymous 
sentences

YES

PRINT

NO
 

Figure 2. The recognoscitive process 1FRG  

2) RGF2 criteria, defined by the following algorithm: 
the determination coefficients r1, r2 are fixed. There will 
be a subset of ( ){ }i XΨ  consisting by all flow equations 

with coefficients ri ∈ [r1, r2], that we will consider as 

"correct". This subset will be a subset of probabilistic 
equations of flow, denominated as flow equations orbital 
or flow orbital simply (Usó-Domènech et al., 1997b) and 
denote by ( ){ } ( ){ }*i iX XΨ ⊂ Ψ . Based on the state 
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equations, we define here three different processes of 
recognoscibility. 

1. A first process of recognoscibility, denoted by 1SRG , 
is determined by the conception of the model itself. 

2. A second process of recognoscibility, denoted by 

2SRG , is independent from the first one and determines if 

the sentences Aj in 
1

; 1, 2,...,
nj

ij
i

dy
x j n

dt =
= =∑ , are 

“correct” or not where every Ψi corresponds to a flow 
equation. Then, we have several possibilities: 

2a) We fix the words and sentences and if any word is 
correct, the sentence will also be. This kind of 
recognoscibility process is determined by the validation 
process. This confirms and reforces Jorgensen (1988) 
when he says that validation is always required. 

Attempt should be made to get data for validation 
which are entirely different from those used in calibration. 
It is important to have data from a wide range of forcing 
functions (measurable attributes) that are defined by the 
objectives of the model ( 1SRG ). Validation criteria 

( 2SRG ) are formulated on basis of the objectives of 

model ( 1SRG ) and the quality of the data. 
2b) Suposse that a slight variation in the data of one of 

the measurable attributes takes place. In such case we 
should move from 'ij ijΨ ⇒Ψ  where 'ijΨ  is synonymous 

of ijΨ . Therefore, it would go from jA  to jA ′ , that is to 
say, from the sentence A to its synonymous sentence A’. 
The synonymous will be found in the orbitals but what is 
more important is that this movement is erratic defining a 
brownian or Wierner process. With this criterium the state 
equations will be stochastic differential equations (SDE). 

3. Finally we show a third process of recognoscibility, 
denoted by 3SRG . This process is based on those words 
generated by the recognoscitive grammar 2FRG . For each 
state equation, defined in terms of sentences, a coefficient 
of determination kd , defined from the corresponding 

coefficients of determination k
ijr  of the flow equations 

which form the sentence, may be defined 

 

1

1 ,0 1
1

k
k

ij
j

k k
k

r

d d== ≤ ≤
∑

 

where 1k is the lenght of the sentence or number of flow 
equations that constitutes it. We define kd  as a complex 
determination coefficient of the state equation. 

When a state equation has a coefficient of 
determination kd , it is transformed into a stochastic 
differential equation and we could speak about stochastic 
state equations (SSE). 

2.7. Dissipation Function and Flow Orbital 
We assume constant the conjugate force to the flow 

process. This, as stated, may be represented by a 
determined flow equation or by flow equations orbital. In 

the latter case, Prigogine’s equation becomes the 
following: 

 ( ){ } ( )* * ; 1,...,i i iX X i nσ = Ψ ⋅∆ =  (27) 

Therefore, for a given system H, flow processes can be 
represented as being *iσ the dissipation orbital function 
of flow process iPΨ , having the orbital n synonymous 
equations. Therefore, for a given system H, flow processes 
can be represented as 

 
( ){ } ( )( )* ;

1,..., ; 1,...,

i ij j
j

X X

i n j m

σΨ = Ψ ⋅ ∆

= =

∑
  (28) 

Such expression given the dissipation function of m 
flow orbitals of system H, corresponding to m flow 
processes. 

3. Conclusions and Perspectives 
From the above we can draw the following conclusions: 
1. Each imbalance produces a force, each force causes a 

flow process, each flow is represented by a flow variable 
that is formally written as an equation, known as flow 
equation, and if each flow tends to equilibrate the system, 
the equations mathematically represent the tendency to 
balance. 

2. The same flow process has a number of flow 
equations that represent it. These equations have each 
other, a relationship of synonymy, forming an equivalence 
class. 

3. There is a subset of synonymous equations, which 
define the same flow process, within which are the 
synonymous equations with highest fit, that is, with higher 
occurrence probability. This subset has been called flow 
orbital. 

4. It is possible to obtain the function of dissipation of a 
given flow equation, of a flow orbital and of flows process 
system. 

Dissipation function is a measure of the entropy 
produced by the system. Dissipation functions of flow 
equations present the following questions: 

1. To what extent is there a relationship between the 
dissipation functions obtained by the theorem of Prigogine 
and deducted through the flow functions?. 

2. What is the relationship between entropy determined 
by these functions of dissipation and linguistic entropy 
obtained in Text Theory of ecological models developed 
by the authors (Sastre-Vazquez et al., 1999, 2000; Usó-
Domènech et al., 1997b, 1999a,b, 2000, 2001, 2002, 2006a,b; 
Villacampa et al., 1999a,b; Villacampa and Usó-Domènech, 
1999a,b)?. 

Only a deepening of the theoretical studies and a strong 
experimentation with real data can clarify the answers to 
these questions.  
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