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a b s t r a c t

Aquaculture of carnivorous fish species in sea-cages typically uses artificial feeds, with a proportion of
these feeds lost to the surrounding environment. This lost resource may provide a trophic subsidy to wild
fish in the vicinity of fish farms, yet the physiological consequences of the consumption of waste feed by
wild fish remain unclear. In two regions in Norway with intensive aquaculture, we tested whether wild
saithe (Pollachius virens) and Atlantic cod (Gadus morhua) associated with fish farms (Fassoc), where waste
feed is readily available, had modified diets, condition and fatty acid (FA) compositions in their muscle
and liver tissues compared to fish unassociated (UA) with farms. Stomach content analyses revealed that
both cod and saithe consumed waste feed in the vicinity of farms (6e96% of their diet was composed of
food pellets). This translated into elevated body and liver condition compared to fish caught distant from
farms for cod at both locations and elevated body condition for saithe at one of the locations. As
a consequence of a modified diet, we detected significantly increased concentrations of terrestrial-
derived fatty acids (FAs) such as linoleic (18:2u6) and oleic (18:1u9) acids and decreased concentrations
of DHA (22:6u3) in the muscle and/or liver of Fassoc cod and saithe when compared with UA fish. In
addition, the u3:u6 ratio clearly differed between Fassoc and UA fish. Linear discriminant analysis (LDA)
correctly classified 97% of fish into Fassoc or UA origin for both cod and saithe based on the FA composition
of liver tissues, and 89% of cod and 86% of saithe into Fassoc or UA origin based on the FA composition of
muscle. Thus, LDA appears a useful tool for detecting the influence of fish farms on the FA composition of
wild fish. Ready availability of waste feed with high protein and fat content provides a clear trophic
subsidy to wild fish in coastal waters, yet whether the accompanying side-effect of altered fatty acid
compositions affects physiological performance or reproductive potential requires further research.

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Anthropogenic changes to natural habitats have precipitated
shifts in the abundance of many vertebrate populations (e.g. Gill
et al., 1996; Wang et al., 2001). When changes have resulted in
increased abundance of food for wild animals, super-abundance
has sometimes resulted (Garrott et al., 1993). In terrestrial habitats,

waste dumps in particular have directly increased populations of
birds (Ramos et al., 2009) and bears (Eberhardt and Knight, 1996),
which utilize these areas as feeding habitats. Increases in the
populations of such species have been attributed to their gregarious
nature and their flexible, opportunistic feeding behaviors, which
makes them highly adapted to utilising new feed resources. In the
marine environment, coastal sea-cage fish farms may represent an
analogous scenario; an increased abundance of food is constantly
available in their vicinity due to the loss of waste feed and wild fish
aggregate in their vicinity in great biomass (Dempster et al., 2002,
2009; Fernandez-Jover et al., 2008) to feed upon this resource (Tuya

* Corresponding author.
E-mail address: jover@ua.es (D. Fernandez-Jover).

Contents lists available at ScienceDirect

Estuarine, Coastal and Shelf Science

journal homepage: www.elsevier .com/locate/ecss

0272-7714/$ e see front matter � 2010 Elsevier Ltd. All rights reserved.
doi:10.1016/j.ecss.2010.12.009

Estuarine, Coastal and Shelf Science xxx (2010) 1e10

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110

YECSS3429_proof ■ 21 December 2010 ■ 1/10

Please cite this article in press as: Fernandez-Jover, D., et al., Waste feed from coastal fish farms: A trophic subsidy with compositional side-
effects for wild gadoids, Estuarine, Coastal and Shelf Science (2010), doi:10.1016/j.ecss.2010.12.009

mailto:jover@ua.es
www.sciencedirect.com/science/journal/02727714
http://www.elsevier.com/locate/ecss
http://dx.doi.org/10.1016/j.ecss.2010.12.009
http://dx.doi.org/10.1016/j.ecss.2010.12.009
http://dx.doi.org/10.1016/j.ecss.2010.12.009


et al., 2006; Fernandez-Jover et al., 2008). Wild fish may benefit
from this feed resource (Fernandez-Jover et al., 2007; Sanchez-Jerez
et al., 2008; Dempster et al., in press),Q1 which could act as a trophic
subsidy. However, whether they are exposed to physiological
changes as a result of consuming large amounts of waste feed has
not been thoroughly explored.

In coastal Norway, 1142 concessions for salmonid farming were
active in 2008 and used 1.2 million tons of fish food to produce
827 000 t of fish (Kjønhaug, 2009; Norwegian Fisheries Directorate,
2009). The amount of food that goes uneaten by salmon during
production and falls through the sea-cages as waste varies, but
estimates of up to 5% (Otterå et al., 2009) indicate that>50 000 tons
of waste feed is directly available towild fish in the vicinity of farms
each year. Wild carnivorous gadoid fish, such as Atlantic cod (Gadus
morhua), saithe (Pollachius virens) and haddock (Melanogrammus
aeglefinus), are the main fish present around Norwegian fish farms
(Dempster et al., in press, 2010b). Aggregations sizes of gadoids have
been estimated to be over 10 tons in the summermonthswithin the
typically less than 1 ha of sea surface area that salmon farms occupy
(Dempster et al., 2009).

These wild gadoids consume large amounts of waste feed in the
vicinity of farms, which results in a significant shift away from their
natural diets (Dempster et al., in press). Marine fish, especially
carnivores, have a natural diet rich in polyunsaturated u3 fatty
acids (PUFA), and as a consequence, u3 PUFAs occur in higher
concentrations in marine fish muscle (Ackman, 1967). Fish meal
and fish oil are added into commercial fish feeds to supply the
requirements of reared carnivorous fish. However, as the demand
for and the cost of these fish feed components is high, the fish feed
industry has developed feeds that contain substantial amounts of
vegetable-derived oils and meals of terrestrial origin that consist
mainly of u6 PUFAs rather than u3 PUFAs. This fundamentally
changes the fatty acid profile of feeds. Sunflower, soya bean, palm
or rapeseed oils are used extensively in fish feed production and
result in high concentrations of oleic acid (18:1u9) and linoleic acid

(18:2u6), reducing the concentration of u3 PUFAs (Pickova and
Mørkøre, 2007; Turchini et al., 2009). Q2If wild fish feed extensively
on lost waste pellets from coastal fish farms, their total fat content
and fatty acid composition may change in the same way as occurs
with reared fish (e.g. Bell et al., 2006; Fernandez-Jover et al., 2007;
Jobling et al., 2008). A previous study carried out at a single farm
showed that wild saithe that were captured nearby had a different
muscle fatty acid composition than saithe caught distant from the
farm (Skog et al., 2003).

As a first step towards determining whether the modified diets
available to wild fish around Atlantic salmon (Salmo salar) farms
have physiological or ecological consequences for wild fish, we
tested whether the diets of cod (Gadus morhua) and saithe (Polla-
chius virens) differ when they are aggregated around fish farms
compared to natural control locations. Further, we tested whether
differences we detected in diets translated into differences in
traditional measures of condition, including Fulton’s condition
index and the hepato-somatic index, and fatty acid concentrations
in body tissues. In doing so, we tested the fatty acid compositions of
muscle and liver tissue, liver being the main fat storage organ in
gadoid fish (Dos Santos et al., 1993).

2. Materials and methods

2.1. Study locations and fish sampled

Saithe and cod were sampled from two salmon farming areas
(Fig. 1): Hitra within the South-Trondelag region (63�N; 94 farms;
82,000 t) and Øksfjord within the Troms region (70�N; 123 farms;
72,000 t; Norwegian Fisheries Directorate, 2009). Farm-associated
(hereafter Fassoc) fish were defined as those captured within 5 m of
sea-cages containing Atlantic salmon. Both cod and saithe were
sampled from within 5 m of the sea-cages at 3 farms at both Hitra
and Øksfjord. These were the same farms used to assess aggrega-
tion sizes by Dempster et al. (2009). Farm-unassociated fish
(hereafter UA) were defined as those captured 4e20 km distant
from the nearest salmon farms (Fig. 1) to limit the possibility of
sampling fish at non-farm locations that had interacted recently
with a farm. Depending on the species and farming area, UA fish
were sampled from 3 to 6 locations. The 4 km minimum limit was
based on telemetry-derived observations of the predominant
movements of wild cod and wild saithe (Uglem et al., 2008, 2009,
2010) in the vicinity of fish farms. UA areas were of similar depth
and bottom habitat as those of the salmon farms. All fishes were
captured between JuneeAugust 2007 with standardized hook and
line fishing gear. Due to the lownumber of fish obtained at someUA
and Fassoc sampling locations, samples were pooled for diet,
condition and fatty acid analyses at the level of the farming area (i.e.
Hitra Fassoc, Hitra UA, Øksfjord Fassoc, and Øksfjord UA; Table 1).

In addition to the fish samples, dry food pellets were directly
collected from the feed bags at each of the studied farms in Hitra
and Øksfjord. 4 pellet types were collected at Hitra and 3 at
Øksfjord. Pellets from the various farms were pooled for Hitra and
Øksfjord for later analysis of their FA profiles.

2.2. Diet and condition indices

Upon capture, fish were immediately placed on ice before
transfer to the laboratory where they were measured (fork length:
FL) and weighed. Livers were then dissected and weighed and
stomach contents from the foregut were dissected. We calculated
two condition indices: Fulton’s Condition Index (FCI ¼ [100 � W]/
L3, where W ¼ weight in g (after withdrawing stomach content
weight) and L ¼ length in cm), and the Hepato-Somatic Index
(HSI ¼ 100 � [liver weight/total weight]). FCI is widely used to

Fig. 1. Map of the Hitra and Øksfjord salmon farming areas in Norway showing the
sampling locations for farm-associated (F) saithe Pollachius virens and Atlantic cod
Gadus morhua and farm-unassociated sampling locations for saithe (S) and cod (C).
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compare growth conditions of fish and HSI, which represents the
ratio of liver weight to body weight, provides an indication on
status of energy reserve in an animal, especially in fish that use liver
as the main storage organ.

Stomach contents from the foregut were examined and prey
species were identified to the highest possible taxonomic separa-
tion. Prey categories were later reduced to 11 for saithe (pellets,
Brachyura, Osteichthyes, Polychaeta, Caridea, zooplankton, Phaeo-
phyceae, Bivalvia (principally Mytilus edulis), Ophiuridae, Hydroida
(principally Ectopleura larynx), and unidentified benthic matter)
and 13 for cod (pellets, Brachyura, Osteichthyes, Polychaeta, Car-
idea, Phaeophyceae, Bivalvia (Mytilus edulis), Holothuria, Ophiur-
idae, Echinoidea, Octopoda, Amphipoda and unidentified benthic
matter). Prey items within each category were weighed.

2.3. Fatty-acid analyses

Samples of the anterior-dorsal white muscle and the homoge-
nized liver (approximately 6 g each) were obtained from individual
fish, packed in aluminum foil, frozen at�20 �C and analyzed within
one week. After individual tissue homogenisation, the FA compo-
sition of the total lipid fraction was determined by fat extraction
following the method of Folch et al. (1957), with a mixture of
chloroform and methanol (1:1 proportion for the first extraction
and 2:1 proportion for the second extraction). Fatty acid methyl
ester samples were prepared and analyzed according to Stoffel et al.
(1959) by gaseliquid chromatography using a SP� 2560 flexible
fused silica capillary column in a HewlettePackard 5890 gas
chromatograph. Individual methyl esters were identified by
comparison with known standards purchased from the Sigma
Chemical Company (St. Louis, MO, USA). Individual FA concentra-
tions were expressed as percentages of the total FA composition.

2.4. Statistical analyses

To test for significant differences between UA and Fassoc cod or
saithe in FCI, HSI or fatty acid profiles within each farming locality
(Hitra or Øksfjord), we used non-parametric ManneWhitney tests.
The significance level was adjusted for multiple comparisons
associated with pairwise tests to a ¼ 0.01 to reduce the probability
of making Type I errors (Bonferroni procedure; Rice, 1989). A
principal component analysis (PCA) was used to explain the vari-
ance in the FA data. Due to a high number of variables (i.e. FAs), the
PCA was used to transform the original variables into new, uncor-
related variables called principal components, which were plotted
to obtain a more informative, two-dimensional picture than the
raw FA table values. To test the suitability of FA profiles for classi-
fying the fish depending on their origin (Fassoc or UA), a linear

discriminant analysis (LDA) was applied for both tissue types. This
analysis searches for the linear combination of variables which best
separates the different groups of samples and gives a final output in
which every sample is classified using the calculated discriminant
model (Duda et al., 2001). All of the fish used for FA analysis were
used to run the LDA. Distinction of each individual fish to Fassoc or
UA origin was done by the leaving-one-out method, which clas-
sifies each case while leaving it out of the model calculations.

3. Results

3.1. Diet of Fassoc and UA Atlantic cod and saithe

In total, 57 UA and 51 Fassoc cod and 52 UA and 55 Fassoc saithe
were captured for analyses (Table 1). There were no significant
differences between the fork lengths of UA and Fassoc cod or saithe
at both localities. No differences in mean weights were detected
between UA and Fassoc cod or saithe, apart from in Øksfjord where
Fassoc saithe (1360 � 9 g) were significantly heavier than UA saithe
(1098 � 98 g). Comparisons of diets, condition and fatty acid
compositions between UA and Fassoc cod or UA and Fassoc saithe at
each locality where thus made based on fish of broadly similar
length and weight.

Diets of cod and saithe at UA locations weremainly composed of
invertebrates, fish and other items (mainly crustaceans; Table 1).
These differed from diets of Fassoc fish at both Hitra and Øksfjord
mainly due to the presence of food pellets, which ranged between
6.3% and 24.9% of the stomach content for cod and 44.3%e95.9% for
saithe.

3.2. Condition of Fassoc and UA fish

FCI differed significantly between UA and Fassoc cod at Hitra (UA:
0.92� 0.02 vs. FA: 1.09� 0.04) but not Øksfjord (UA: 0.97� 0.39 vs.
FA: 1.00 � 0.02; Fig. 2). Significant differences between HSIs were
detected between UA and Fassoc cod at both localities, with livers of
Fassoc fish consistently larger as a proportion of total body weight
than their UA counterparts. At Hitra, average HSIs were over 2 times
greater for Fassoc (2.5 � 0.4) than UA cod (1.1 � 0.2). Similarly, at
Øksfjord, mean HSI values were over 3 times greater for Fassoc
(10.0 � 2.1) than UA (2.9 � 0.3) cod.

For saithe, we did not detect significantly increased levels of FCI
and HSI for Fassoc compared to UA fish, with the only exception of
significantly higher FCIs for Fassoc saithe at Hitra compared to UA
fish (Fig. 2). UA saithe had average FCIs of 0.97 � 0.07 and
1.00 � 0.36 at Hitra and Øksfjord, respectively. Fassoc fish values
ranged between 1.13� 0.04 at Hitra and 1.09 � 0.03 at Øksfjord. No
significant differences were found among Fassoc and UA fish at any

Table 1
Size, total weight (g), fork length (cm), mean stomach content (g) and proportion of occurrence (percentage of fish containing each prey item) of Atlantic cod (Gadus morhua)
and saithe (Pollachius virens) captured adjacent to farms (Fassoc) or unassociated with farms (UA Q8). ManneWhitney test were apply to detect significant differences for weight,
length and mean stomach content between Fassoc and UA fish within each locality. Significance level: *0.05, **0.01.

G. morhua P. virens

Location Hitra Øksfjord Hitra Øksfjord

Treatment UA Fassoc UA Fassoc UA Fassoc UA Fassoc

No. fish 25 24 32 27 24 25 28 30
Fork length (cm) 38.2 � 1.8 45.1 � 4.6 61.5 � 3.1 74.5 � 4.5 30.0 � 1.3 33.0 � 4.1 47.2 � 1.7 51.0 � 1.2
Total weight (g) 540 � 107 970 � 538 2359 � 467 4035 � 726 310 � 45 390 � 31 1098 � 98** 1360 � 9*
Mean stomach content (g) 6.3 � 3.3 19.3 � 13.6 32.1 � 8.4 56.1 � 17.8 0.45 � 0.12 58.2 � 55.9** 4.8 � 2.9 15.5 � 3.2*
% Invertebrates 90.1 10.1 73.0 31.1 100 3.1 21.1 30.4
% Fish 9.9 79.8 25.5 35.4 0 1 36.8 11.8
% Food pellets 0 6.3 0 24.9 0 95.9 0 44.3
% Other 0 3.8 1.5 8.7 0 0.4 42.1 13.6
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Fig. 2. Box plots of the Fulton’s Condition Index (FCI) and Hepato-somatic Index (HSI) of farm-associated (Fassoc) and unassociated (UA) cod (Gadus morhua) and saithe (Pollachius
virens).
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locality for HSI. At Hitra, mean HSI values were similar for UA
(7.9 � 1.5) and Fassoc (7.5 � 0.5) saithe. At Øksfjord, UA saithe had
a lower mean HSI value (5.5 � 0.57) than Fassoc fish (7.0 � 0.7), but
due to high variability in HSI values among individuals, no signif-
icant difference was detected.

3.3. Fatty-acid compositions of waste feed

Food pellets collected at both Øksfjord and Hitra had broadly
similar FA compositions. Pellets contained high amounts of u3
(23.0e32.8%),u9 (22.6e37.1%) andu6 fattyacids (8.2e13.0%; Table 2).

High concentrations of the palmitic (16:0, 11.4e17.1%), oleic (18:1u9,
30.8e16.1%), linoleic (18:2u6, 6.4e12.0%) EPA (20:5u3, 7.0e12.7%)
and DHA (22:6u3, 8.6e14.4%) fatty acidswere also detected. Øksfjord
pellets contained high levels of EPA and DHA.

3.4. Fatty acid compositions of Fassoc and UA fish

When FAs were individually compared, several fatty acids in
bothmuscle and liver differed between Fassoc and UA cod and saithe
at both localities (Table 3). For cod, linoleic (18:2u6) acids were
significantly increased in Fassoc fish compared to UA fish in both
muscle and liver tissues. Significantly higher levels of eicosadienoic
(20:2u6), linolenic (18:3u3) and docosapentaenoic (22:5u3) acids
were also detected in the muscle of Fassoc compared to UA cod. Even
greater differences between the Fassoc and UA groups were found in
the cod liver tissue. In addition to linoleic acid, differences were
detected for oleic acid (18:1u9) and total monounsaturated acids
due to higher levels in Fassoc cod. In contrast, significantly lower
levels of DHA (22:6u3), total u3, u3/u6 ratio and total Highly
Unsaturated u3 acids (HUFA) were detected in the livers of Fassoc
cod compared to UA cod.

Principal components analysis indicated that PC1 and PC2
explained 24.6% and 19.3%, respectively, of the total variability for
cod muscle and 24.2% and 13.7% for cod liver (Fig. 3). Linoleic and
linolenic acid were the factors that showed the highest positive
correlation with PC1 regarding cod muscle, DHA and 20:4u6
showed the highest negative correlations. DHA also showed
a marked negative correlation with PC2. This was translated in the
differentiation of some Fassoc fish along PC1 and PC2, butmany Fassoc
and UA fish remained overlapped in the plot. Differentiation was
clearer regarding cod liver; Fassoc fish showed a tendency to order
along PC1 with linoleic, linolenic and oleic acids with the highest
negative correlation loads, with DHA presenting the highest posi-
tive correlation. According to the FA profile of cod muscle, linear
discriminant analysis (LDA) correctly assigned 88.5% of the indi-
viduals to their Fassoc or UA origin (69 out of 78). LDAwas evenmore

Table 2
Fatty acid composition (% of total fatty acids) of the food pellets used at Øksfjord and
Hitra. Numbers are mean � standard deviation of 3 types of food pellets used at
Øksfjord and 4 types used at Hitra. Only fatty acids with a concentration higher than
1% are shown.

Fatty acids Øksfjord Hitra

C16:0 17.1 � 1.90 11.4 � 0.30
C18:0 2.74 � 0.07 2.80 � 0.23
Total saturated 27.9 � 2.45 20.6 � 0.45

C16:1u7 5.65 � 0.87 3.48 � 0.23
C18:1u7 2.65 � 0.23 2.72 � 0.04
C18:1u9 16.1 � 5.92 30.8 � 1.33
C20:1u9 5.23 � 1.31 5.05 � 0.94
Totalu9 22.6 � 4.57 37.2 � 0.29
Total monounsaturated 31.1 � 4.00 43.5 � 0.18

C18:2u6 6.37 � 2.01 12.0 � 0.55
Total u6 PUFA 8.16 � 1.58 12.9 � 0.60

C18:3u3 2.07 � 1.05 5.13 � 0.25
C18:4u3 2.36 � 0.46 1.51 � 0.17
C20:5u3 12.7 � 2.43 6.97 � 0.28
C22:5u3 1.16 � 0.10 0.66 � 0.05
C22:6u3 14.4 � 1.02 8.55 � 0.38
u3 PUFA 32.3 � 2.97 23.0 � 0.56

Total polyunsaturated 41.0 � 1.56 35.9 � 0.34
u3/u6 4.17 � 1.12 1.79 � 0.12
u3 HUFA 28.5 � 3.56 16.4 � 0.64

Table 3
Fatty acid composition (% of total fatty acids) of farm-associated (Fassoc) and farm-unassociated (UA) cod (Gadus morhua). Data are expressed as mean � standard deviation.
ManneWhitney test were apply to detect significant differences for weight, length and mean stomach content between Fassoc and UA fish within each locality. Significance
level: **0.01, ***0.001.

Muscle Liver

Hitra Øksfjord Hitra Øksfjord

UA Fassoc UA Fassoc UA Fassoc UA Fassoc

n 20 19 22 17 5 5 10 10

C16:0 17.14 � 0.24 17.45 � 0.37 17.35 � 0.16 16.79 � 0.22 0.39 � 0.86 0.53 � 0.65 0.44 � 0.45 0.34 � 0.44
C18:0 3.62 � 0.08 3.71 � 0.08 4.18 � 0.23 4.32 � 0.21 4.62 � 0.3 4.73 � 0.45 3.54 � 0.33 3.42 � 0.26
Total saturated 22.53 � 0.31 23.05 � 0.38 23.55 � 0.37 23.23 � 0.43 25.82 � 0.93 22.59 � 1.75 23.95 � 0.77 21.08 � 0.8

C16:1u7 1.08 � 0.05 1.08 � 0.06 1.06 � 0.04 1.22 � 0.07 3.52 � 0.77 5.76 � 0.71 5.52 � 0.42 5.16 � 0.37
C18:1u9 5.75 � 0.22 6.31 � 0.29 5.88 � 0.26 8.48 � 0.41*** 8.33 � 0.89 19.89 � 3.06** 12.18 � 0.65 20.99 � 1.48***
C18:1u7 2.36 � 0.09 2.76 � 0.23 2.31 � 0.07 2.54 � 0.1 4.19 � 0.15 6.74 � 1.85** 3.69 � 0.22 4.12 � 0.33
C20:1u9 0.89 � 0.1 1.31 � 0.19 1.09 � 0.11 1.25 � 0.08 3.9 � 1.29 4.93 � 0.93 7.6 � 0.89 4.76 � 0.34
Totalu9 7.91 � 0.32 8.79 � 0.4 7.99 � 0.33 10.7 � 0.43*** 14.81 � 1.93 25.58 � 3.43 21.25 � 1 26.93 � 1.1***
Total monounsaturated 11.65 � 0.42 12.92 � 0.46 11.63 � 0.34 14.74 � 0.48*** 22.75 � 2.63 38.62 � 2.72** 30.71 � 1.1 36.53 � 1.54***

C18:2u6 0.8 � 0.05 1.31 � 0.11*** 0.7 � 0.02 2.24 � 0.28*** 0.98 � 0.09 4.64 � 1.17** 2.09 � 0.31 5.57 � 0.84**
C20:4u6 4.5 � 0.29 3.8 � 0.35 3.26 � 0.3 2.81 � 0.2 4.29 � 0.69 2.19 � 0.93 0.83 � 0.16 1.06 � 0.22
Total u6 PUFA 6.65 � 0.35 6.81 � 0.49 5.59 � 0.29 7.02 � 0.27*** 7.79 � 0.8 10.61 � 1.35 4.34 � 0.37 8.33 � 0.67***

C18:3u3 0.39 � 0.02 0.52 � 0.03** 0.26 � 0.01 0.59 � 0.08*** 0.92 � 0.1 3.09 � 0.21*** 1.42 � 0.11 1.91 � 0.26
C18:4u3 0.44 � 0.04 0.38 � 0.06 0.46 � 0.06 0.37 � 0.06 0.82 � 0.33 1.13 � 0.47 2.53 � 0.46 1.31 � 0.15**
C20:5u3 14.34 � 0.43 15.27 � 0.83 15.36 � 0.63 14.95 � 0.67 11.04 � 0.78 10.04 � 1.34 12.44 � 0.81 11.34 � 0.56
C22:5u3 1.1 � 0.03 1.58 � 0.16** 0.85 � 0.02 1.28 � 0.06*** 1.53 � 0.22 1.43 � 0.23 1.14 � 0.05 1.54 � 0.09***
C22:6u3 42.71 � 1.16 39.25 � 1.2 42.15 � 0.82 37.71 � 0.76*** 28.98 � 2.36 11.82 � 2.8** 23.21 � 1.26 17.43 � 1.87**
Total u3 PUFA 59.16 � 0.82 57.19 � 0.62 59.2 � 0.74 54.99 � 0.77*** 43.61 � 2.27 28.17 � 2.7** 40.98 � 1.5 34.04 � 1.53**

Total PUFA 65.81 � 0.68 64.01 � 0.66 64.79 � 0.64 62.02 � 0.67** 51.18 � 5.2 38.78 � 1.59** 45.32 � 1.44 42.37 � 1.18
u3/u6 9.49 � 0.61 9.31 � 0.73 11.36 � 0.73 8.09 � 0.43*** 5.76 � 0.42 2.95 � 0.63** 10.05 � 0.89 4.59 � 0.75***
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accurate in assigning individuals to Fassoc or UA origin based on the
liver samples, correctly classifying 96.7% of individuals (29 out of
30).

Similar results were detected for saithe: FAs in Fassoc saithe were
significantly modified away from those of UA fish. Higher levels of
linoleic acid (18:2u6), and a decreased u3/u6 ratio were detected
in farm-associated saithe at both localities in both tissues (Table 4).
Moreover, for saithe muscle, the total amount of u6 FAs was
significantly higher in Fassoc saithe compared to UA saithe.

Principal components analysis indicated that PC1 and PC2
explained 22.8% and 15.6%, respectively, of the total variability for
saithe muscle and 24.0% and 18.6% for saithe liver (Fig. 4). Linolenic
(18:3u3), linoleic (18:2u6) oleic (18:1u9) and 22:5u3 acids showed
the highest correlation with PC1, while DHA presented a high
negative correlation. Even though some overlapping between Fassoc
and UA profiles existed, separationwas greater than for cod muscle.
For saithe liver, Fassoc profiles showed greater variability among
individuals than those of UA fish. The highest positive correlations

were reached by palmitic (16:0) and 24:1u9, while the highest
negative correlations occurred for linoleic (18:2u6) and 22:5u3 FAs.
When LDA was applied to the total FA profile of saithe muscle, the
analysis correctlyassigned85.7%of the individuals according to their
Fassoc or UA origin (66 out of 77). For saithe liver, LDA correctly clas-
sified 96.7% of individuals to their Fassoc or UA origin (29 out of 30).

4. Discussion

Waste feed from coastal fish farms are shown to modify the diet
of wild cod and saithe in their vicinity, which increases their
condition relative to fish captured several km away from farms. In
effect, the ready availability of waste feed, which is known to have
a high protein and fat content (Hardy and Barrows, 2002;
Fernandez-Jover et al., 2007), provides a trophic subsidy to these
wild fish. Waste feed contained high levels of FAs of terrestrial
origin and its consumption by wild fish led to detectable changes to
the FA profiles of their muscle and liver tissues. Modification of the
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Fig. 3. Principal components analysis of the fatty acid profile of muscle and liver samples of farm-associated (filled symbols) or unassociated (empty symbols) Atlantic cod (Gadus
morhua).
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diet, condition and FA profiles of wild fish associated with sea-cage
aquaculture appears to be a general effect for wild fish that feed
heavily on the waste food pellets (Skog et al., 2003; Fernandez-
Jover et al., 2007, 2009).

4.1. FAs as biomarkers of waste feed consumption by wild fish

Large aggregations of wild cod and saithe occur around fish
farms (Dempster et al., 2009) and are resident for periods of weeks
to months (Uglem et al., 2008, 2009). Aggregation by wild fish at
fish farms is principally due to the increased presence of food (Tuya
et al., 2006; Dempster et al., 2010b), and our results demonstrate
that persistent consumption of the waste feed by wild fish alters
the FA profile of their tissues. This change in cod and saithe diet
directly influenced the FA profile of muscle and liver, which is the
main fat storage organ of gadoids (Dos Santos et al., 1993). Specif-
ically, increases in concentrations of linoleic (18:2u6) and oleic
(18:1u9) acids and the u3/u6 ratio were detected, and decreases in
concentrations of DHA (22:6u3). Linoleic and oleic acid in partic-
ular were present in high concentrations in the formulated pellets.
These FAs (linoleic, oleic and DHA) stand out as candidates for use
as biomarkers of the influence of fish farms on wild fish.

Liver was the most sensitive tissue to FA modification and
enabled correct classification into UA or Fassoc origin for 97% of cod
and saithe individuals. Muscle was also a good indicator, enabling
correct classification into UA or Fassoc origin for 89% of cod and 86%
of saithe. The difference in classification accuracy between the two
tissue types may be explained by differences in the time required
for FA turnover in muscle and liver. Liver tissue, especially of
gadoids, is rich in neutral lipids, which are more rapidly mobilized
than the abundant polar lipids present in gadoid muscles (Dos
Santos et al., 1993; Jobling, 2001; Sargent et al., 2002; Tocher,
2003; Jobling et al., 2008). Therefore, FA mobilization in the liver
is a more rapid and dynamic process and is more likely to provide
a snapshot of a recent diet than muscle tissue. In contrast, the lipid
content of the muscle of gadoids is very low (w0.5%), with

phospholipids being themajor class (Dos Santos et al., 1993; Jobling
et al., 2008). This indicates the structural role of fatty acids in this
tissue, which generally presents a more conservative profile than
the liver. This could be noted from the PCA plots (Figs. 3 and 4); the
origin of the fish was clearly differentiated by analyzing cod liver,
with DHA as the main differentiating FA. For saithe liver, the PCA
plots showed a more conservative pattern, as shown by the lower
plot dispersion of Fassoc saithe liver. In contrast, UA fish showed
a more dispersed pattern, which may have been due to individual
variability in natural diets.

Therefore, as turnover of the FA content in muscle tissues is
more conservative than liver, changes in the muscle fatty acid
profile may be a more informative tool than changes in the liver to
investigate the influence of waste feed on wild fish over long time
scales. However, since the liver composition of gadoids is greatly
modified, and HSI values of Fassoc cod were 2e3 times those of UA
cod, liver tissues could be useful in addressing potential impacts of
fish farm diets on gadoid energy stores. Previous analyses of the FA
profiles of farmed and wild cod livers using gas chromatography
found clear differentiation (Standal et al., 2008) indicating that this
procedure could also be applied to determine the influence of sea-
cage aquaculture on the local ichthyofauna.

Tracking of dietary components through the food web cannot be
entirely achieved using other methods such as examination of
stomach contents, which are modified by digestion, or stable
isotopes, which are useful in estimating the trophic level of
a predator but cannot determine the species composition of the
diet (Hobson, 1993; Gilmore et al., 1995; Koch et al., 1995). FAs
could, therefore, be used as biomarkers in the study of the structure
and dynamics of fish foodwebs around fish farms, as alternatives to
direct or indirect methods that provide information of the most
recent meal and may not be representative of the longer term diet
(see Dalsgaard et al., 2003 for a review on FA trophic markers).
Their qualitative use has inferred trophic levels and spatial and
temporal differences in diets both within and among species
(Kakela et al., 1993; Smith et al., 1996, 1997; Iverson et al., 1997a, b).

Table 4
Fatty acid composition (% of total fatty acids) of farm-associated (Fassoc) and farm-unassociated (UA) saithe (Pollachius virens). Data are expressed asmean� standard deviation.
ManneWhitney significance level: ** 0.01, *** 0.001.

Muscle Liver

Hitra Øksfjord Hitra Øksfjord

UA Fassoc UA Fassoc UA Fassoc UA Fassoc

n 20 20 18 20 5 5 10 10

C16:0 17.18 � 0.25 16.6 � 0.54 15.65 � 0.44 16.03 � 0.51 0.58 � 0.52 0.53 � 0.63 0.48 � 0.37 0.38 � 0.75
C18:0 4.13 � 0.1 4.09 � 0.15 4.07 � 0.16 4.21 � 0.21 4.48 � 0.23 3.56 � 0.42 4.02 � 0.13 4.13 � 0.18
Total saturated 24.08 � 0.36 24.03 � 0.68 22.49 � 0.61 23.37 � 0.3 28.17 � 0.76 25.9 � 1.08 25.57 � 0.62 23.83 � 0.99

C16:1u7 1.32 � 0.09 1.81 � 0.17 1.88 � 0.16 2.14 � 0.25 6.19 � 0.39 5.26 � 0.25 5.97 � 0.34 5.75 � 0.26
C18:1u9 5.78 � 0.32 8.24 � 0.84** 7.31 � 0.63 10.01 � 1.05 11.03 � 1.74 8.39 � 2.06 16.24 � 1.8 19.67 � 1.24
C18:1u7 2.41 � 0.23 1.91 � 0.14 2.3 � 0.08 2.75 � 0.13** 3.52 � 0.26 2.28 � 0.23 3.81 � 0.12 4.2 � 0.29
C20:1u9 2.83 � 0.43 3.29 � 0.39 2.82 � 0.35 2.34 � 0.26 9.59 � 2.11 16.19 � 1.9 7.67 � 1.05 6.85 � 0.8
Total u9 9.66 � 0.42 12.51 � 0.71*** 11.15 � 0.82 10.5 � 0.53 22.07 � 2.3 28.77 � 2.14 25.2 � 1.68 27.57 � 0.73
Total monosaturated 13.62 � 0.61 16.45 � 0.99 15.51 � 0.98 14.54 � 0.62 32.06 � 2.58 36.45 � 1.88 35.28 � 1.72 37.82 � 0.79

C18:2u6 0.95 � 0.05 3.48 � 0.55*** 1.14 � 0.2 2.91 � 0.49** 1.61 � 0.1 2.8 � 0.58** 2.31 � 0.7 4.79 � 0.79**
C20:4u6 1.34 � 0.07 1.24 � 0.07 1.13 � 0.05 1.53 � 0.09*** 0.49 � 0.05 0.27 � 0.06 0.42 � 0.03 0.59 � 0.06
Total u6 PUFA 3.95 � 0.15 6.45 � 0.51*** 3.27 � 0.24 5.5 � 0.49*** 3.34 � 0.12 4.38 � 0.72 3.77 � 0.67 6.58 � 0.87**

C18:3u3 0.62 � 0.05 1.06 � 0.1*** 0.87 � 0.24 0.89 � 0.11 1.68 � 0.11 2.17 � 0.19 1.63 � 0.23 1.96 � 0.16
C18:4u3 0.81 � 0.1 0.93 � 0.11 0.83 � 0.05 0.58 � 0.05** 3.02 � 0.32 5.17 � 0.5 2.26 � 0.18 1.89 � 0.1
C20:3u3 0.14 � 0.02 0.11 � 0.01 0.31 � 0.18 0.1 � 0.01 0.3 � 0.02 0.3 � 0.04 0.24 � 0.01 0.19 � 0.02
C20:5u3 13.22 � 0.29 13.54 � 0.37 12.95 � 0.58 12.51 � 0.64 12.03 � 1.01 10.54 � 0.23 12.09 � 0.76 11.69 � 0.52
C22:5u3 0.92 � 0.05 1.24 � 0.09*** 0.9 � 0.02 1.16 � 0.1 0.77 � 0.03 0.74 � 0.05 0.76 � 0.02 1.12 � 0.08**
C22:6u3 42.58 � 0.86 36.15 � 0.85*** 42.81 � 0.95 38.01 � 2.18 18.59 � 2.23 14.3 � 0.39 18.34 � 1.64 14.87 � 1.18
Total u3 PUFA 58.33 � 0.66 53.05 � 0.9*** 58.71 � 1.09 56.57 � 1.12 36.41 � 3.27 33.24 � 0.73 35.36 � 2.06 31.75 � 1.11

Total PUFA 62.29 � 0.62 59.5 � 0.49** 61.99 � 0.94 62.08 � 0.67 39.75 � 3.21 37.63 � 0.97 39.13 � 1.6 38.33 � 1.25
u3/u6 15.22 � 0.7 9.7 � 1.08*** 19.5 � 1.28 12.78 � 1.56*** 11.03 � 1.38 8.21 � 0.97** 11.07 � 1.25 5.98 � 1**
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Further, the effect of the terrestrial-originated FAs on the entire
food web (Fernandez-Jover et al., 2009; Olsen et al., 2009) requires
further study asmarine organisms are not typically exposed to such
high levels of these FAs.

4.2. Waste feed as a trophic subsidy with compositional side-effects
for wild fish

Traditional indicators offish condition (FCI, HSI) indicate that cod
and saithe around fish farms in our two study regions directly
benefited from consuming the readily available waste feed. Simi-
larly, in an extensive study comparing the diets of farm-associated
and wild fish, Dempster et al. (in press) detected significantly
elevated FCIs and HSIs for both saithe and cod associated with fish
farms in three intensive fish farming regions in Norway. Waste feed
thus provides a trophic subsidy to wild fish in coastal waters.
Increased FCIs and HSIs translate to increased energy stores in wild
fish, which is strongly correlated with the amount of energy fish are

able to invest in spawning (Marshall et al., 1999), which may ulti-
mately translate to spawning success (Izquierdo et al., 2001).

Cod and saithe are among the most abundant species aggre-
gated around Norwegian fish farms (Dempster et al., 2009). They
are attracted and concentrated from surrounding habitats and
a high proportion of fish that aggregate are of adult size (Dempster
et al., 2009). In addition, saithe have been shown to repeatedly visit
and reside for months at multiple farms in regions with intensive
aquaculture (Uglem et al., 2009), effectively using farms as an inter-
connected network of preferred feeding habitats. Therefore, the
effects of waste feeds as a resource subsidy may be enhanced in
areas with higher farming density.

Whether the side-effect of altered fatty acid composition of
tissues that accompany increased fish condition has consequences
for the physiological performance or spawning success of farm-
associated wild fish remains unknown. Significantly increased
levels of linoleic acid (18:2u6) for both species and oleic acid for
cod (18:1u9) were found in the liver of Fassoc fish relative to UA fish.
Oleic acid, in particular, is used by gadoids as an energy source
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Fig. 4. Principal components analysis of the fatty acid profile of muscle and liver samples of farm-associated (filled symbols) or unassociated (empty symbols) saithe (Pollachius
virens).
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(Jobling et al., 2008). However, if negative physiological or ecolog-
ical effects override the likely positive effects on fish condition
provided by the trophic subsidy, FAs from terrestrial origins may
represent a new source of pollution for wild fish. Unfortunately,
limited knowledge exists concerning the physiological effects of FA
modification in wild fish over short or long temporal scales.

Marine fish require certain essential FAs, and their dietary
requirements cannot be entirely fulfilled with oils from terrestrial
origins. Alteration of the FA compositions of diets for cultivated fish
is an active research field that aims at clarifying the limits of
substitution of terrestrial-derived u6 FAs for marine-derived u3
FAs (e.g. Pickova and Mørkøre, 2007). Specifically, DHA (which was
found significantly decreased in saithemuscle at Hitra and cod liver
at both localities) is a key FA in neural tissues (brain or eyes) in
marine fish since it can form up to 72% of its phosphoglycerides
composition (Sargent et al., 1999, 2002; Tocher, 2003). We also
found decreased levels of total u3 PUFAs in cod liver and the ratio
u3/u6 in cod liver and saithe muscle and liver. Polyunsaturated FAs
are of particular importance for the formation of gametes. They are
selectively transferred to the eggs and deficiencies in the amounts
of these FA lead to reduced growth, egg quality, fecundity and larval
survival (Sargent et al., 1999, 2002; Turchini et al., 2009).

However, evidence from studies related to the spawning of
farmed cod within sea-cages suggests that the modified diets
around fish farms and their alteration of wild fish composition is
unlikely to change the ability of cod and saithe to spawn. Farmed
cod fed farm diets their entire lives within sea-cages both mature
and spawn viable eggs which hatch and contribute to the larval
pool in fjord systems (Jørstad et al., 2008). These larvae have been
documented to survive to young-of-the-year stage in the wild and
contribute to the recruit pool in fjord populations of cod (van der
Meeren and Jørstad, 2009). Thus, it is possible that the trophic
subsidy provided towild fish in the vicinity of farms could translate
to enhanced spawning success. Research to document the relative
value of natural diets compared to farmmodified diets to spawning
success and timing must be clarified to determine the ecological
role of waste feed as a trophic subsidy.

Up to 170 species of wild fish have been documented to asso-
ciate with fish farms as adults or juveniles worldwide (Sanchez-
Jerez et al., in press). Wild fish populations at aquaculture sites
are subject to several anthropogenic impacts, including fishing
(Akyol and Ertosluk, 2010) or aquaculture-originated contaminants
(DeBruyn et al., 2006; Bustnes et al., in press).Q3 If the alteration of FA
profiles of farm-associated wild fish diminishes their performance,
they may be subject to additional synergistic effects with the other
anthropogenic impacts. Further research into the potential effects
on wild fish caused by aggregation at fish farms, modified dietary
intake and altered fatty acid compositions should target the
mechanisms driving the changes we have observed.
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