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Abstract. Binarization represents a key role in many document image analysis
workflows. The current state of the art considers the use of supervised learning, and
specifically deep neural networks. However, it is very difficult for the same model
to work successfully in a number of document styles, since the set of potential do-
mains is very heterogeneous. We study a multi-source domain adaptation strategy
for binarization. Within this scenario, we look into a novel hypothesis where a spe-
cialized binarization model must be selected to be used over a target domain, in-
stead of a single model that tries to generalize across multiple domains. The prob-
lem then boils down to, given several specialized models and a new target set, de-
ciding which model to use. We propose here a simple way to address this question
by using a domain classifier, that estimates which of the source models must be
considered to binarize the new target domain. Our experiments on several datasets,
including different text styles and music scores, show that our initial hypothesis is
quite promising, yet the way to deal with the decision of which model to use still
shows great room for improvement.
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1. Introduction

Binarization represents a key role in many Document Image Analysis (DIA) workflows
[1,2], as it helps to reduce the complexity of the image by highlighting the relevant in-
formation (i.e., the ink). This process also enables the use of specific procedures in-
volving morphological operators, connected-component search, or histogram analysis,
among others. Given its importance in the field of DIA, there is a vast amount of existing
literature concerning document image binarization, including surveys and reviews [3].

A straightforward procedure for binarization is that of thresholding, in which all pix-
els under a certain value are set to 0, being set to 1 otherwise. For example, Otsu’s algo-
rithm automatically estimates a global threshold for a given input image [4]. In contrast
to global thresholding, there also exist algorithms that compute a different threshold for
each pixel depending on its local neighborhood, such as Niblack’s [5], Sauvola’s [6] and
that proposed by Wolf et al. [7]. More complex algorithms for document image binariza-
tion have also been proposed, such as those by Gatos et al. [8], Su et al. [9] or Howe
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[10], all of which are based on different image processing workflows comprising several
steps.

Supervised learning has been also considered for document image binarization. A
classification-based approach consists in querying every pixel of the image, perform-
ing a feature extraction, and then using a learned model to predict its category. Within
this formulation, both classical Multi-Layer Perceptron [11] and Convolutional Neural
Networks [12] have been studied.

More recently, image-to-image models based on Fully Convolutional Neural Net-
works (FCN), which were first proposed for semantic segmentation [13], have been ap-
plied to document image binarization [14]. The FCN takes an input grayscale or color
image and directly provides the probability of each pixel to be foreground or background
in just one step. According to one of the latest Competition on Document Image Bina-
rization [15]—a common benchmark for this task—the use of FCN can be considered
the current state of the art, as most of the best methods are based on this idea. Therefore,
we will use this kind of neural network as the backbone of our methodology.

It is convenient to emphasize, however, that it is very difficult for the same model to
work successfully in a number of document styles, since the set of potential domains is
very heterogeneous. Previous work demonstrated that the use of a model over a different
type of manuscript to that for which it was trained noticeably decreased the performance
[16].

The common idea to deal with the situation mentioned above is to train a single
model with datasets of different types, with the hope that it will generalize to unknown
domains successfully. However, our hypothesis is that a specialized model could better
deal with the binarization of a target domain. The open question, therefore, is how to
decide which of these specialized models should be used or to what extent one should
trust their predictions, conditioned to the characteristics of the target set to be binarized.
We study here a straightforward way to address this question by using a domain classifier,
which determines the suitability of each specialized binarization model for the new target
domain.

Our experiments on several datasets, including different text styles and music scores,
show that our initial hypothesis is quite promising, yet the way to deal with the decision
of which model to use still shows great room for improvement.

The rest of the work is structured as follows: in Section 2, we thoroughly describe
our methodology; Section 3 specifies our experimental setup are given; in Section 4, we
report the results attained, along with analysis and discussion; in Section 5 a qualitative
evaluation is discussed; and finally, in Section 6, we present the conclusions, including
some potential ideas for future work.

2. Methodology

Image binarization is a function B : [0,255](h×w×c) →{0,1}(h×w) that converts an image
with a defined height h, width w, and c channels into its binary version.

As mentioned above, the state of the art considers image-to-image FCN to approxi-
mate B. Typically, these methods assume that the distribution of the data to be binarized
is similar to that used for training, which is not very useful in many real cases. We here
propose a strategy to deal with this situation.
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Our methodology assumes an unsupervised multi-source domain adaptation sce-
nario, where there is a collection of training sets {S1,S2, . . .}, each representing a source
labeled domain with pairs of document images and their perfectly binarized versions,
being X i

S = [0,255]h
i
s×wi

s×c the i-th image from the training sets and Y i
S = {0,1}hi

s×wi
s its

corresponding ground-truth data. The goal, however, is to provide a binarization strategy
that works successfully over a completely unknown target set, which is only presented at
the test time.

In our strategy, a specialized binarization model is first trained for each of the source
domains. Our hypothesis is that a new target set should be binarized with the best model
among those of the previous step. We propose a domain classifier for this decision that
knows how to distinguish between all these source sets. This classifier is later used to
classify a test sample, and we then provide a binarization accordingly through a specific
decision mechanism.

Below we describe thoroughly the three elements involved in our methodology: the
binarization model, the domain classifier, and the decision mechanism.

2.1. Selectional Auto-Encoders

Although our strategy is independent of the underlying binarization model considered, as
long as it is based on machine learning, in this work we shall implement the Selectional
Auto-Encoder (SAE) model, proposed in the work of Calvo-Zaragoza and Gallego [14].

An SAE model is trained to perform a function such that b : R(h×w×c) → [0,1](h×w).
That is, it learns a score map over a h×w× c image that preserves the input shape. The
score value (or neural activation) of each pixel depends on whether the pixel belongs to
the foreground or the background.

This type of architecture is typically implemented as an FCN, and so the prediction
can be done through successive convolutions and sampling operations, without any fully-
connected layer. The last layer consists of a set of neurons that predict a value in the
range of [0,1], depending on the selectional level of the corresponding input pixel. A
graphical illustration of this configuration is shown in Figure 1.

B

X i = [0,255]h
i×wi×c

xi, j = [0,255]h×w×c

Y i = {0,1}hi×wi

yi, j = [0,1]h×w

Figure 1. Schema of an SAE model in document image binarization. Note that X i is the i-th image from the
source set while training, or the target set otherwise.

The weights of the SAE are learned through a training process with the aim at bina-
rizing document images. The training stage consists of providing examples of images and
their corresponding binarized ground-truth data. Since an SAE is a type of feed-forward
network, the training process can be carried out by conventional means [17].
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Once the SAE has been properly trained, an image can be parsed, after which a score
level is assigned to each input pixel. In practice, the network barely outputs either 0 or 1
but an intermediate value. Therefore, a thresholding process is still necessary to convert
the obtained neural activations into actual binary values. Since the network already takes
into account the context of each pixel in its internal operation, a single global threshold is
sufficient. In practice, unless otherwise stated, a threshold value of 0.5 can be assumed.

Furthermore, it might happen that the size of the input document is higher than the
input layer of the SAE. In such a case, we simply split the input document into pieces of
the size expected by the network and parse them independently. Then, to reconstruct the
original image, we assemble the independent pieces, without further processing.

2.2. Domain Classifier

At this point, we have a way to train a specialized binarization model for each source
domain (Bi). However, when a new test sample must be binarized, we do not know which
of them should be used. To address this issue, our strategy includes a domain classifier
that is responsible for estimating which of these specialized models is more appropriate
at each case.

To achieve this goal, we use a very straightforward premise: we train a classifier that
predicts which of the source domains a certain sample belongs to. This is simple to carry
out, as we can create ground-truth data for domain classification by taking samples of
the images from each source domain. Then, the model can be trained to categorize them
as samples of the domain they were taken.

Among the options available to build this classifier, we consider Convolutional Neu-
ral Networks, because of their successful performance in image processing tasks. Note
that a neural network does not fully categorize the input but produces a weight ŵ ∈ [0,1]
(output activation) for each possible category—domains, in this case. The weights rep-
resent the probability of the input sample belonging to each possible domain. As we
describe in the next section, we shall propose alternatives for taking advantage of ŵ to
select how the final binarization is performed.

2.3. Combination Mechanism

The only thing left to complete our strategy is to decide how to combine the binarization
results provided by each of the specialized SAE models and the probabilities ŵ provided
by the domain classifier.

From the received information, we must produce a single binarization result, which
represents the actual output of our domain adaptation approach. We consider two alter-
natives for the combination of information:

• Class-based selection: the domain with the highest probability according to the
domain classifier is selected for binarization.

• Weighted combination: the final score of each pixel is computed as a linear com-
bination of the prediction by each specialized SAE, weighted by their ŵ.

The first option follows a winner-takes-it-all approach, whereas the second one en-
sembles the predictions of each specialized SAE according to their estimated confidence
for the test data.

For the sake of clarity, we provide a general overview of our strategy in Figure 2,
including the different elements and the data flows.

C. Garrido-Munoz et al. / Domain Adaptation for Document Image Binarization572



B1

B2

B3

Dom. class.

ŵ
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Figure 2. Framework schema proposed for multi-source domain adaptation for document image binarization.

3. Experimental setup

This section details the experimentation carried out to evaluate the proposed approach.
First, the corpora and metrics considered are described, and second, the experimental set-
up is detailed, with the architecture of the neural networks considered and their hyper-
parameterization.

3.1. Corpora

In order to assess our proposal, documents of different types have been considered, in-
cluding text documents and music score images. Figure 3 includes representative exam-
ples from each and Table 1 shows the details of each one.

• DIB: set of images of handwritten Latin text documents from the Document Image
Binarization Contest [18], annually held from 2009. We combined the collections
from 2009 to 2016 as a single corpus for our experiments.

• PHI: collection of scanned images of Persian manuscripts from the Persian Her-
itage Image Binarization Competition [19] as a different text domain.

• SAL and EIN: two collections of high-resolution images of scanned documents
that contain lyrics and music scores in neumatic notation. Specifically, those im-
ages from Salzinnes Antiphonal (CDM-Hsmu 2149.14)2 and Einsiedeln, Stifts-
bibliothek, Codex 611(89)3, respectively.

2https://cantus.simssa.ca/manuscript/133/
3http://www.e-codices.unifr.ch/en/sbe/0611/

C. Garrido-Munoz et al. / Domain Adaptation for Document Image Binarization 573

https://cantus.simssa.ca/manuscript/133/
http://www.e-codices.unifr.ch/en/sbe/0611/


(a) DIB (b) PHI (c) SAL (d) EIN

Figure 3. Examples of document patches from the corpora considered.

Table 1. Details of the corpora. The columns represent the corpus, the number of images, the average resolu-
tion of the images, and finally, the average amount of ink pixels with respect to the entire images, respectively.

Corpus Pages Size Ink

Text documents
DIB 86 659×1560 px. 7.2%
PHI 15 1022×1158 px. 9.2%

Music documents
SAL 10 5100×3200 px. 19.2%
EIN 10 5550×3650 px. 20.0%

For the experimentation, the images from the corpora have been configured with the
5-fold cross validation technique with three partitions, for training, validating and testing
with 60%, 20% and 20% of the whole collections, respectively.

3.2. Metrics

The binarization issue is a two-class problem in which the pixels are classified as fore-
ground or background. However, as seen in Table 1, given the imbalanced scenario in
this context, the assessment requires to use metrics that do not bias towards the majority
class—background in this case. For this, we consider the calculation of the F-measure
(F1), which is mathematically defined as

F1 =
2 ·TP

2 ·TP+FP+FN
, (1)

where TP represents the True Positives or correctly classified pixels, FP is False Positives
or type I errors and FN stands for the False Negatives or type II errors. Note, that in our
context, we assume the foreground as the positive class.

In addition to computing this metric for the binarization predictions, we also con-
sider the multi-class version of this metric to assess the isolated performance of the do-
main classifier proposed.

3.3. Hyper-parameterization

Concerning the SAE architecture, it is divided into two parts: an encoder, composed of
consecutive blocks of convolutional layers and down-sampling operators, and a decoder,
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which includes blocks of convolutional layers and up-sampling operators, as many up-
sampling operations as there are down-sampling ones in the encoder stage. For our ex-
periments, we define an encoder block as two consecutive convolutional layers with the
same number of filters in both and followed by a max-pooling operator of 2× 2 px. In
addition, after all these encoder blocks, two additional convolution layers are included
with 128 filters each. Concerning the decoder block, it is defined as an up-sampling op-
erator of 2×2 px. and two convolutional layers with a symmetric number of filters with
respect to the encoder blocks. We particularly considered two blocks for both the encoder
and decoder and a residual connection between the second blocks of each one after the
convolution layers.

It should be noted that the number of filters is increased with the number of blocks
in the encoder stage, and decreasing in the decoder one, in a factor of 2, with an initial
number of 32 filters. We considered using a kernel shape of 3× 3 px. for these layers
and a Rectified Linear Unit (ReLU) activation for each convolution. Finally, another
convolutional operation with 32 filters and a kernel size of 15 is performed to eventually
finish in a 1× 1 convolutional layer of one filter with Sigmoid activation to obtain the
score result for each pixel of the input image.

In addition to the SAE model, we also need to define the domain classifier used
for our proposal, which is the one responsible for determining which of the known
domains—sources—most closely resembles to the new unlabeled domain. The architec-
ture considered for this purpose contains three sequential blocks of a convolution layer,
a max-pooling operator of 2×2 px. and a dropout with 0.2 of probability. The first block
uses 32 filters with a kernel of 5×5 px. whereas the remaining two convolutions contain
64 filters with the same kernel. After these blocks, a flatten operation is performed fol-
lowed by a fully-connected layer with 64 neurons. Finally, another fully-connected layer
is used, with as many neuron as known domains, with a softmax activation. The rest of
the convolutions use the ReLU activation function.

As aforementioned in Section 2, both the SAE model and the domain classifier do
not process the full image at once, but they deal with patches in which the images are
split. After informal experiments, we consider a size of 256×256 px. for these patches.
Moreover, the models are trained for 300 epochs maximum, with a batch size of 32
and checking the models in each epoch with the validation partitions to keep the best
configuration. It is worth highlight that the learning process is carried out by means of
the Adam optimizer [20] in the case of the binarization model, and stochastic gradient
descent [21] for the domain classifier. Note that the test partition is not used at all for the
training process.

It is worth mentioning that, in our experiments, we have considered RGB images
(that is, c = 3). However, any other color/grayscale space could be considered as long as
the model is trained and used consistently.

3.4. Competing Approaches

For the sake of clarity in the analysis of the results, in this section, we here describe and
denote each scenario considered in our experiments.

First, we considered two possible baseline experiments: the case in which only a
single source domain is used and the one in which a single model is trained with all the
source training sets. Henceforth, we denote these baseline cases as Single-domain and
Multi-domain, respectively.
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Another scenario to be studied is that in which our proposals are considered. As
aforementioned, given a new image, a domain classifier recommends which of all the
available specialized models should be used to binarize the image. The recommendation
of the classifier is used in two different modes (see Section 2.3): the first one would be
the case in which it decides the binarization model to be used according to the classifi-
cation, and the second one, that obtains the probability of that image to belong to each
source domains for then weighting the probabilities obtained for each binarization model.
These two proposals are referred to in the rest of the paper as Class-based selection and
Weighted combination, respectively.

Finally, since our approach is based on the decision of using a specific model or the
weighted ensemble, we also include a study to analyze the upper bound that could be
achieved with our hypothesis. This is artificially assessed by selecting always the best
binarization model for each test patch. This experiment is referred to as Ideal-patch. An-
other ideal case to be analyzed is the case in which the domain classifier selects the best
specialized model given a full domain, so that the same binarization model is applied for
all the patches. We denote this experiment as Ideal-global. Note that these experiments
are only used as a reference to measure the potential of our premise, but they do not
represent real results.

4. Results

In this section, we present the final results achieved by our approach. Moreover, we
compare them with the ones obtained by baseline methods, described in Section 3.4. Our
results are reported in Table 2.

As can be observed, comprehensive experiments have been carried out, reporting
all possible combinations of source and target sets for each method. Note that the Ideal-
global is not directly included in the table because its results can be inferred by selecting
the best model for each target in the Single-domain experiments.

Concerning the baseline cases, i.e. Single-domain and Multi-domain, we observe
that, as expected, the models trained with multiple sources are significantly more robust.
Generally, we realize that the Single-domain method is not adequate for unsupervised
experiments except in certain cases. For example, in the case in which SAL is the source,
the supervised results achieve 96% of F1, however, the results for the unsupervised ones
are severely worsened, obtaining between 19.7% and 72.2% of performance. Note that
this last figure matches with that obtained with EIN, which in turn, matches in document
type with the source domain, since both contain music notation. Given that the remaining
domains are collections of text manuscripts, important differences can be found in their
content compared to the music documents. This might explain this high degradation in
the binarization result. However, when a text manuscript—DIB or PHI—is used as the
source, the degradation in the performance when dealing with music documents is not as
accentuated. This may be attributed to the variability in the content of the images within
the text collections, being the images of music documents more uniform. Therefore, this
characteristic could be to blame for these disparate behaviors.

However, when multiple labeled domains are aggregated in the training process of a
single domain (Multi-domain), the results are generally more robust and stable, with the
exception of the two text manuscripts—DIB and PHI. When they are considered as unla-
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Table 2. Average results in terms of F1 (%) for different source combinations. The “Avg. on target” column
represents the average results among the target testing domains, i.e. the unsupervised experiments.

Method Testing data
Avg. on target

Training data SAL EIN DIB PHI

Single-domain
SAL 96.0 72.2 28.9 19.7 40.3
EIN 94.9 91.1 40.9 47.2 61.0
DIB 89.6 85.3 87.3 86.2 87.0
PHI 86.7 84.9 79.0 88.9 83.5

Multi-domain
EIN-DIB-PHI 94.7 91.2 87.6 84.9 94.7
SAL-DIB-PHI 95.9 90.0 88.8 85.8 90.0
SAL-EIN-PHI 96.0 91.3 58.5 83.7 58.5
SAL-EIN-DIB 95.7 91.3 88.2 79.2 79.2

Class-based selection
EIN-DIB-PHI 92.9 90.3 79.8 81.7 92.9
SAL-DIB-PHI 95.3 84.7 77.1 88.4 84.7
SAL-EIN-PHI 96.2 91.0 58.3 83.7 58.3
SAL-EIN-DIB 95.7 90.8 84.7 84.4 84.4

Weighted combination
EIN-DIB-PHI 93.3 90.3 81.6 89.2 93.3
SAL-DIB-PHI 95.3 86.2 78.5 89.3 86.2
SAL-EIN-PHI 96.2 91.0 62.2 84.7 62.2
SAL-EIN-DIB 95.8 90.9 86.5 85.4 85.4

Ideal-patch
EIN-DIB-PHI 95.2 91.5 89.0 91.0 95.2
SAL-DIB-PHI 96.4 88.7 88.7 90.9 88.7
SAL-EIN-PHI 96.6 91.5 80.8 89.1 80.8
SAL-EIN-DIB 96.6 91.5 88.4 86.6 86.6

beled domains in unsupervised experiments, they obtain the worst results found in Multi-
domain (F1 = 58.5% and F1 = 79.2%, respectively). This situation can be attributed to
the same reason explained in the Single-domain, i.e. because of the high variability of
these text manuscripts.

With all this, we can conclude that the Single-domain is able to obtain good results
for specific domains, but it is way less generalizable than Multi-domain.

With respect to our Class-based selection proposal, we observe also robust results,
obtaining competitive results. Indeed, when one of the text manuscripts is unknown for
the model—PHI—it achieves a F1 of 84.4% for the unique unlabeled domain—PHI—
whereas the Multi-domain baseline provides a result of 79.2%, obtaining, therefore, a
relative improvement of 6.6%. In the rest of the unsupervised experiments, the proposal
obtains slight reductions in the performance between 0.3% and 5.8% of relative degrada-
tion, so that there is room for improvement, mainly associated with the domain classifier
performance, which shall be later analyzed.

Concerning our second proposal—Weighted combination—the results indicate that
this method is more promising. All the unsupervised cases obtain better performance
with respect to Class-based selection, with relative improvements from 0.4% and 6.7%
of F1. In addition, compared with Multi-domain, both unsupervised experiments with a
text manuscript as the target are significantly improved, with relative boosting of 6.3%
and 7.8% for DIB and PHI, respectively. With respect to the music documents, the
method also experiments certain degradation with relative figures between 1.5% and
4.2%. Therefore, with all this, the text manuscripts as the target domains may be consid-
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ered as the main beneficiaries of our approach, whereas the music images do not find this
boosting. Note, however, that the text manuscripts are those domains in which less per-
formance is obtained by Multi-domain, so that, because of the high performance obtained
in the music documents, this task becomes a major challenge to improve the baseline
case.

Note that the cases in which our best proposal—Weighted combination—does not
outperform the baselines are those where SAL and EIN (music corpora) are considered
as testing data. Specifically, our proposal decreases the results for SAL from 94.7%
to 93.3% and from 90% to 86.2% for EIN. These manuscripts are particularly diffi-
cult to process because of the high complexity of their content. They do not contain
only one type of information, since there are staff lines, music notation, decorations
and text. Precisely this variety is not provided by the text manuscripts considered in the
experiments—DIB and PHI—so that the results of the individual models trained with
these are not able to suitably detect such information and, therefore, the combination
introduces errors. This leads us to conclude that the method will probably fail when few
or none of the source domains are similar enough to the test one.

Furthermore, for the sake of the evaluation and analysis, the results that could be
obtained if the domain classifier were always correct for each patch are also reported—
Ideal-patch. We observe that, in this case, the unsupervised experiments are further im-
proved, with relative figures for the text manuscript from 1.4% and 29.9% with respect
to Weighted combination, representing a relevant improvement. If we compare the re-
sults with Multi-domain, we realize that the text domains experiment relative boosting
between 9.3% and 38.1% in unsupervised learning, whereas concerning the music doc-
uments, the results reveal a relative improvement of 0.5% for SAL. Nevertheless, EIN do
not exhibit the same situation, but a slight relative degradation of 1.4%.

Table 3. Average results in terms of F1 (%) on all targets in each approach considered. The bold figure high-
lights the best result in a real scenario, while the underlined figure indicates the best ideal case—which is only
provided as a reference.

Method F1

Baseline cases
Single-domain 68.0
Multi-domain 80.6

Our approaches
Class-based selection 80.1
Weighted combination 81.8

Ideal cases
Ideal-global 86.4
Ideal-patch 87.8

Although not all cases are improved by our approaches, or even by the Ideal-patch
experiment, we observe that, according to the average result obtained on unknown tar-
get domains, our approaches, and especially Weighted combination, may be beneficial to
the binarization task. The results shown in Table 3 support this idea, since the baselines
Single-domain and Multi-domain achieve 68% and 80.6% of average performance in un-
supervised experiments, and our best model Weighted combination obtains 81.8%, thus
overcoming the baseline cases. In addition, the potential of our approach is proved with
the ideal experiments, reporting that, if the domain classifier were perfect, the average

C. Garrido-Munoz et al. / Domain Adaptation for Document Image Binarization578



results could be improved to 86.4% for the case in which the domain classifier selects the
best specialized model for the entire domain—Ideal-global—and 87.8% for Ideal-patch,
i.e. the case in which the domain classifier selects the best model for each patch. The
latter is especially relevant, obtaining a relative improvement of almost 9% with respect
to the best baseline, and demonstrating that our approach could perform this task better
as long as the way of selecting the specialized model is more accurate.

Table 4. Average results in terms of F1 (%) obtained by the domain classifier.

Sources F1

EIN-DIB-PHI 68.3
SAL-DIB-PHI 73.5
SAL-EIN-PHI 92.4
SAL-EIN-DIB 87.7

Since we saw that the domain classifier could be improved to closely match the
results obtained in the Ideal-patch experiment, Table 4 shows a reference of the aver-
age performance provided by the domain classifier in controlled scenarios. We observe
different behaviours depending on the domains involved. For example, the best case is
presented when SAL, EIN and DIB are considered with a result of 92.4%. However, the
worst result can be found when EIN, DIB and PHI are used, with only a performance
of 68.3%. Indeed, the domain classifier reports the worst error rates when the two text
manuscripts are considered, whereas the two cases in which the music domains SAL and
EIN are used provide the best results. This reinforces the idea that the great variability of
the text collections makes it difficult to carry out this classification task, likewise in the
binarization performances, by adding an important degree of complexity in data. These
values confirm that there exist great room for improvement that could be achieved with
other neural architectures, more comprehensive hyper-parameter optimization or another
combination mechanism.

5. Qualitative Evaluation

To complement the previous experiments, we now report some representative examples
of the benefits that our method can bring. Table 5 shows these selected examples, where
we observe the potential of our approach compared with the Multi-domain, which is the
most competitive baseline approach. Note that this table includes the binarization result
by our best approach proposed in this work: Weighted combination.

Concerning the first example, the input image is a chunk from the DIB domain. After
being processed by the Multi-domain, we observe that the method retrieves much of the
foreground information, but also confuses several ink stains by labeling them as part of
the foreground. These false-positive errors are slightly corrected by our method Weighted
combination, whose result is a cleaner image. If we focus on the ideal case, we realize
that the result that could be obtained by our approach is much closer to the ground-truth
data, avoiding the aforementioned errors and obtaining a high-quality binarization result.

Concerning the two remaining examples, they correspond to images from PHI and
DIB, respectively. Note the important difference of the input image in the third example
compared with the first example, although both belong to the same domain. This explain
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Table 5. Selected examples in which our approach is clearly beneficial for the binarization task. The columns,
in order, represent the input images, the binarization performed by the best baseline method and our best
approach, the ideal result that could be achieved and the ground truth, respectively.

Input Multi-domain Weighted combi-
nation Ideal-patch GT

1

2

3

the great variability within DIB described in Section 4. We observe that the Multi-domain
barely detect the ink strokes, missing a lot of ink pixels by categorizing them as back-
ground. These false negatives are severely corrected but our approach, obtaining a highly
reliable result. In both cases, we realize that the differences between the ideal experiment
and our approach are slightly perceptible, but at least visually, all the relevant informa-
tion is detected. Indeed, only some details are missing if these results are compared with
the ground truth.

Although the comparison of the performance in the last section does not seem very
significant, these graphic examples prove that our approach can be beneficial for bina-
rization. This reinforces our premise that specialized models may carry out the binariza-
tion more reliably than a generic model trained with multiple domains. Thus, our ap-
proach is able to combine the advantages of the specialized models with the generaliza-
tion capability of the more generic ones, since our domain classifier contributes with this
characteristic to our approach.

6. Conclusions

In this work, we present an alternative to improve the generalization of binarization
strategies based on machine learning. Our methodology assumes a domain adaptation
scenario, for which we have several training corpora (referred to as source domains) and
our goal is to improve the performance of the binarization when applied to a domain for
which no data is available (target domain). Our approach consists of training different
neural networks for binarization, each of which is specifically trained with the data of a
single source domain. We then provide a final binarization building upon the specialized
models and the output of a domain classifier, which determines the suitability of each
base model for the target sample.

In our experiments, we consider four datasets of different typology and it is shown
that our starting hypothesis is quite promising. The upper bound that can be achieved by
selecting a specialized model clearly improves the best baseline result, which consists of
training a single model with all the data from the source domains. However, our way of
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selecting the best model for each sample is not very competitive, since the improvement
with respect to the aforementioned baseline is not negligible.

As future work, we plan to close the gap between our results and those achieved
when assuming that the specialized model is correctly selected (Ideal). There are dif-
ferent ways of pursuing this goal. For example, instead of classifying a sample as to
which domain it belongs to, we could train a model that predicts which of the specialized
models binarize a sample better. This may lead to better results, given that the classifier
learns how to choose a binarization model, instead of choosing a domain. In addition,
other ways of selecting the specialized model could be considered by means of domain
similarity and the domain2vec approach [22].
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