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performance of this feature along with polarization and intensity
products according to different classification strategies and algo-
rithms. Seven different classification workflows were evaluated,
covering pixel- and object-based analyses, unsupervised and
supervised classification, different machine-learning classifiers,
and the various effects of distinct input features in the SAR
domain—interferometric coherence, backscattered intensities,
and polarization. All classifications followed the Corine land cover
nomenclature. Three different study areas in Europe were selected
during 2015 and 2016 campaigns to maximize diversity of land
cover. Overall accuracies (OA), ranging from 70% to 90%,
were achieved depending on the study area and methodology,
considering between 9 and 15 classes. The best results were achieved
in the rather flat area of Dofiana wetlands National Park in Spain
(OA 90%), but even the challenging alpine terrain around the city
of Merano in northern Italy (OA 77 %) obtained promising results.
The overall potential of Sentinel-1 interferometric coherence for
land cover mapping was evaluated as very good. In all cases,
coherence-based results provided higher accuracies than intensity-
based strategies, considering 12 days of temporal sampling of
the Sentinel-1 A stack. Both coherence and intensity prove to be
complementary observables, increasing the overall accuracies in
a combined strategy. The accuracy is expected to increase when
Sentinel-1 A/B stacks, i.e., six-day sampling, are considered.

Index Terms—Copernicus, interferometric coherence, land
cover mapping, Sentinel-1, synthetic aperture radar (SAR).

I. INTRODUCTION

AND cover classification and vegetation mapping are im-

portant applications of remote sensing data. In the frame
of the GEO Task US-09-0O1a, the Group of Earth Observations
(GEO) [1] addressed the identification of critical earth obser-
vation priorities considering land cover, vegetation and forest
covers, and vegetation type or land use as observation priorities
with an impact on different societal benefit areas (SBAs), such
as, for instance, agriculture, ecosystems, or biodiversity. In
addition, land cover classification and vegetation mapping are
also important indicators of the interaction between humans and
the natural environment. For instance, the use of this information
in land use management plays a key role in the sustainable
development and efficient exploitation of the earth’s natural
resources. Thus, the availability and accessibility of accurate and

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/
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timely land cover sets is critical at different spatial scales—at
global or regional levels for policy-making and at a closer local
scale to help farmers optimize their resources. For these reasons,
land cover and vegetation mapping covers a broad perspective
within the earth observation context.

The European Copernicus Programme, and in particular, the
Copernicus Land Monitoring Service (CLMS) provides the
framework for such an approach. The space segment of the
programme, the Sentinels, defines a whole new playground for
exploring the limits and potentialities of diverse technologies
in order to generate updated and precise land cover maps all
around the globe. In this context, synthetic aperture radar (SAR)
technology is able to provide data during the day and night and
in cloudy conditions. Consequently, these systems may deliver
systematic and reliable temporal datarecords of an observed area
of the earth’s surface. Since its launch in April 2014, the C-band
Sentinel-1A system has been providing SAR data time series
with a 12-day repeat cycle. The launch of a twin C-band satellite
Sentinel-1B system in April 2016 has reduced this to a six-day
repeat cycle. In addition, thanks to the interferometric capabil-
ities, the temporal information is captured not only in the time
series of SAR images, but also in the interferometric coherence
from pairs of SAR images. The availability of these global data
favours the emergence of alternative approaches to the mapping
scene where mostly the optical, but also the radiometric, data
have established their niche. In this regard, the purpose of this
article is specifically to explore and evaluate performance when
using the interferometric coherence from SAR, and in particular
Sentinel-1, time series and interferometric data for land cover
and vegetation mapping. Using SAR data for land cover mapping
is not a new concept and attempts to use it go back to the time
of the ERS-1 mission, e.g., [2], [3], but only a small number
of classes were detectable then, due to the constraints of the
available imagery at the time.

The first objective is to quantify the impact of using Sentinel-1
InSAR (interferometric SAR) data relative to traditional SAR-
based land cover and vegetation mapping [4]-[7]. Previous
literature have already indicated the usefulness of using InNSAR
information for land cover classification [8]-[16]. In addition
to the impact of interferometric coherence, this article also
evaluates the impact, in terms of land cover classification and
vegetation mapping, of SAR intensity and SAR polarimetry
[17]-[19].

Classification performances also depend on the methodology
employed to process the data. Thus, the second objective of this
article is to evaluate the impact of the classification technique,
as well as different aspects associated with it. Consequently,
seven different classification techniques are evaluated, where
aspects such as the use of pixel or segment-based approaches
or the impact of the sampling strategy on training are also
considered.

The evaluation of the classification performances is achieved
considering three different Sentinel-1 SAR data time series in
2015 and 2016 campaigns at test sites in Spain, Italy, and Poland.
These three areas range from barren land, crops, or urban areas
to high-altitude alpine environments. The complete evaluation
was conducted as part of the European Space Agency project

SEOM-S14SCI Land “SinCohMap: Exploitation of Sentinel-1
InSAR Coherence for Land-Cover and Vegetation Mapping”
(www.sincohmap.org).

This article is structured as follows. Section II provides a
formal description of the interferometric coherence and its re-
lation to the land cover along with the matrix formulation to
consider multitemporal stacks. The data setup and the classi-
fication strategies exploited are also introduced in this section.
Section III introduces the obtained classification results with the
different methodologies. In Section IV, a discussion and insights
from the obtained results are presented. Finally, in Section V,
conclusions and future perspectives are provided.

II. MATERIALS AND METHODS
A. Multitemporal Coherence Matrix

The complex correlation coefficient between two complex
SAR images S; and S, represents the normalized correlation
between these two SAR acquisitions and is mathematically
obtained by

E{5.55}

Je (o) i)

where E'{-} represents the mathematical expectation and * in-
dicates the complex conjugate. Typically, the complex phase is
interpreted by means of the amplitude |p|, or coherence, and the
phase ¢ corresponding to the interferometric phase. While the
phase term is mostly related to the geometrical aspects of the
scene and the acquisition system, the coherence is customarily
described as the combination of multiplicative set of decorrelat-
ing factors as follows [20]-[22]:

p=lple” = (M

| p| = Ptemporal PSNR Prange Pvolume Pother - 2)

Although some terms depend on the system or external param-
eters, i.€., PSNR» Prange> ANd Porher, Others depend on the scatterer
under observation [20]-[22]. In this work, attention is focused
on the latter ones, which will justify a classification approach
based on coherence as the input feature. Regarding the temporal
decorrelation term pPemporal, this is the most important decorrela-
tion term in the frame of this study, as it is expected to be able to
provide information about the evolution of the land cover in the
scene over temporal series of S-1 data with possibly increasing
temporal baselines, i.e., the time span between both acquisitions.
With respect to the volume decorrelation term pyojume, in the case
of Sentinel-1, the nominal orbital tube is 50 m (RMS), thus the
small normal baselines in the repeat-pass configuration of this
system prevents the volumetric decorrelation from being a term
of significant interest.

Under the assumption of ergodicity and considering locally
stationary processes, the spatial averaging around the pixel of
the study leads to the maximum likelihood estimator of the
coherence [23], which can be expressed for each spatial pixel as

>oi1 Sali) - S5(1)
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types. Left: VV polarization, right: VH polarization.

where L indicates the spatial set of samples employed to com-
pute the estimated correlation. When a time series of N SAR
images is available, the potential combinations of pairs of SAR
images to derive the corresponding complex correlation coeffi-
cients is equal to N - (N — 1)/2, and it is possible to define the
Hermitian positive semidefinite temporal covariance matrix for
the complete interferometric stack as follows:

(1S11%)  (S15%) (S15%)
. (S257) (|82 (S2S%)
C11emporal = : . . . . €]
(SnS7) (SnS3) (1Sn[?)

The multitemporal covariance matrix in (4) contains, on the
main diagonal, the sequence of backscatterer intensities, and the
off-diagonal terms contain all possible temporal interferometric
combinations of the SAR stack of images. Assuming a con-
stant image acquisition sampling, the closer the interferometric
combination is to the mean diagonal, the shorter the temporal
baseline. Each of the diagonals represents an isobaseline stack.
Applying a proper power normalization, the multitemporal

coherence matrix can be obtained from (4) as

L pi2 PIN
pra L ... pan
Ftemporal = . . . . . 5)
PiN Pon -o L

The information contained in (5) is a subset of the information
contained in the more general covariance matrix but it allows
the interferometric coherence to be isolated from the rest of
the information. The most relevant advantage of using both the
covariance or coherence matrix formulation is that it not only
allows a more detailed characterization of the target under ob-
servation, but also a better characterization of its dynamics. The
information provided by these matrices is the starting point for
the classification strategies described in the following sections.

As an example, in Fig. 1, the upper half (with the lower part
symmetrical) of the multitemporal coherence matrix expressed
in (5) is provided for six different land cover types—urban, bare
rock, orchard, forest, and irrigated grassland in medium and in
high altitudes. This set of figures illustrates the variability along
the internal time dimensions, i.e., off-diagonals for equibaseline
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in python Jupyter notebooks [24], [25], which allow the participants to focus strictly on the development of their classification methods.

coherences and rowwise for equireference coherences, for each
present class. The way in which the coherence evolves in a
different way for each class is clearly visible, with the most
stable that is observed for the urban context. In the other cases,
the land dynamics, such as the decorrelation periods due to
snow in the bare rock areas or the cultivation cycles in the
orchards or agricultural sites, drive the behavior of the coherence
matrices in a more complex manner. The polarimetric diversity
of the aforementioned land covers, illustrated here with both
polarimetric channels VV (on the left) and VH (on the right),
also supports the use of the polarimetric information in the
classification scheme. For instance, coherence over bare rock
is significantly lower at the VH channel than at the VV channel
as a consequence of the low backscattered power at VH from
the rock surface, which yields an important decorrelation due to
a low signal-to-noise ratio, i.e., psngr in (2) is smaller at VH than
at VV for bare rock.

B. Round-Robin Consultation Experience

The evaluation was initiated by a round-robin (RR) exercise
within the context of the ESA SEOM SInCohMap project (see
Fig. 2). The RR included in its definition the evaluation of
multiple classification methodologies for land cover and the
intercomparison of the results obtained from the perspective of
each methodology. The idea was not only to involve the different
teams and partners of the project in the comparison, but also to
provide external scientists and experts in the field the possibility
to participate. The final objective was to shed some light onto the
characteristics and features that a classification method based
on interferometric coherence products should consider. Fig. 2
provides an overview of the main elements involved and the

required setup defined in the exercise. In this section, details on
each of these elements are provided.

The first step to providing a significant methodological com-
parison is to ensure that all methods are using the same stack of
input data, otherwise the outcome of the comparison would not
be reliable. Therefore, analysis-ready data were provided to all
participants. Moreover, the InNSAR data processing, especially
involving the Sentinel-1 single look complex (SLC) interfer-
ometric wide swath (IW) mode is not straightforward. Refer-
ences to the steps involving the interferometric processing chain
can be easily found in the literature [26]. Nonetheless, precise
coregistration strategies shall be addressed in order to satisfy
the requirements of the S-1 IW products [27]. To satisfy the
quality and homogeneity of the comparison, the SLC data were
processed to produce a single InSAR stack using the in-house
software PRISAR [28], developed and maintained by UPC and
DARES. The steps and parameters during this stage are:

1) coregistration, using precise orbital information and an

external DEM;

2) radiometric calibration, to compensate topographical dis-
tortions and bias, enabling the use of the radiometric
backscatter and intensity features;

3) interferometric stack generation, providing all the possible
combinations between the SLC acquisitions of 2015 and
2016;

4) speckle filtering and coherence estimation; exploiting a
box-car filter with four samples in azimuth and 19 samples
in range;

5) geocoding, creating a WGS84 UTM grid for all of the
interferometric products.

The resolution of the final product is 60 m x 80 m. To prevent

issues in the geocoding transformation, this is oversampled by a
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factor of 3 x 4. Thus, for all sites, a UTM grid of 1000 x 1000
samples of 20 x 20 m resolution was defined, resulting in an
area of 20 x 20 km for each site.

Despite processing small areas, the dataset produced by In-
SAR processing is huge. All possible interferometric combina-
tions consist of more than 700 combinations in the considered
sites. Moreover, the consideration of the two channels from
the polarimetric domain significatively increases the size of
the stack. To simplify and provide access to this amount of
information, all the InSAR data for a particular site were grouped
together to form a 5-D datacube—two dimensions for space
(easting and northing), two dimensions for time (master and
slave dates of the interferogram), and one additional dimension
for the polarimetric channel. The datacubes with the InSAR data,
along with the corresponding ground truth reference information
were uploaded to a server with geographical capabilities (ras-
daman). Standard protocols for accessing and querying the data
were also offered, such as WCS and its extension, the WCPS.

The processing requirements to deal with all the data stack are
also demanding in terms of hardware infrastructure. To engage
and simplify participation in the RR, a processing environment
was set up for each of the participants of the experience [29] on
the infrastructure of the Eurac Research Sentinel Alpine Obser-
vatory (http://sao.eurac.edu) operated by the Institute for Earth
Observation. The aforementioned datacubes were organized in
rasdaman [30], [31] and made openly accessible. On top of this, a
Jupyter-hub environment was set up for all participants to have
a web-accessible (http://sincohmap-hub.eurac.edu) processing
environment executing all code right next to the data. In this

context, the use of Jupyter notebooks [24], [25] has proven to be
areally simple way to develop prototypes and methods. The fast
access to the already processed data served to develop and test
a wide variety of methods rapidly. With this setup, the context
for an efficient and reliable comparison was defined. A total
of six teams were engaged into the RR, including two external
participants, and during the five months of evaluation, seven
different classification methodologies were considered in the
results comparison.

C. Land Cover Classification Methodologies

In this section, the seven methodologies proposed and tested
by the participants during the RR are described. Fig. 3 shows
the implemented workflows, described in detail in this section.

1) Random Forest Classification (RF): The first methodol-
ogy consists of a supervised classification approach [32] based
on the random forest (RF) algorithm [33]. In this approach, the
selected features are the Sentinel-1 image intensities and the
interferometric coherences with the shortest temporal baselines.
Thus, the coherence between consecutive images was analyzed
assuming they are less affected by temporal decorrelation and
providing more information about changes occurring in the dif-
ferentland covers with different intensities and/or different times
of the year. This information corresponds to the main diagonal
of values in the depicted coherence matrix for selected pixels in
Fig. 1. Limited tests have also been performed exploiting longer
temporal baselines.
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2) Eigenvalue Classification (EigCoh): In this methodology,
a linear transformation of the original space is performed before
the classification step itself is applied. In this case, the input
feature is the whole coherence matrix, i.e., all the interferometric
coherence combinations, and before being classified, the data
are decomposed using the eigenvalue decomposition theorem.
To exploit the backscattering information, the intensity products
are, either together with the coherences or by themselves, also
transformed by the eigendecomposition algorithm before enter-
ing the classifier. This method exploits the transformed space
to train and classify exploiting the the multitemporal coherence
and/or intensity eigenvalues using an RF classifier. This method
permits the dimensional space to be reduced from the data
information perspective. One percent of the overall image size
was randomly sampled as training samples proportional to the
class size of the ground truth data.

3) Temporal Dynamic Indices (TDI): Building up on intra-
annual indices used for land cover classification [34], [35]
this method exploits the temporal dynamics of coherence data.
Assuming that every land cover class has its own spectral
behavior over time, values from the available coherence time
series were used to generate several indices, reflecting these
temporal dynamics. From each coherence matrix of every single
pixel, the values of the baseline evolution of the first master date
(first row of matrix) and the evolution of the shortest baseline
(first diagonal) were extracted as time series. For these two
series of values, minimum, maximum, and mean values and
the slope between the first and last value were calculated as
separate indices. Further, a univariate spline and an interpo-
lated univariate spline [36] with a smoothing degree of k = 1
were fitted to calculate the first derivative and an integral. The
best fitting polynomial [37] function for the time series was
calculated to use its fitting degree and the mean and steepest
slope. Finally, a Lomb—Scargle model [38], [39] was generated
to use the maximum and minimum power of the periodogramm
and the time step of the maximum power. Also, seasonal three-
month averages and normal coherence images were generated
for the coherence time series. The derived indices were used
as features for the supervised training of an RF model. One
percent of the overall image size was randomly sampled as
training samples proportional to the class size of the ground truth
data [40], [41].

4) Object-Based Image Classification (KTH-SEG): An im-
age segmentation using an edge-enhanced region growing
and merging approach was used in conjunction with an ob-
ject feature-based support vector machine classifier [7]. This
methodology was applied to a number of different input feature
stacks derived from the multitemporal interferometric coher-
ence amplitude matrix and/or intensities derived from Sentinel-
1 A. All results presented are based on the shortest temporal
baseline diagonal of the matrix. Different sample sizes were
tested (0.01% or 100 pixels, 0.1% or 1000 pixels, and 1% or
10000 pixels) where the number of training samples was held
constant for each class. When matching pixel samples to a seg-
ment, the decision is based on the majority of pixels belonging
to one class, in the event that more than one pixel falls into a
segment. However, this case occurred rarely, as the sampling was

stratified based on the polygons of the reference data, and rules
were imposed such that pixels selected for sampling were not too
close to each other. A number of different segment sizes were
tested and the best results were found when limiting segments
to fall in the range of 8 to 500 pixels, where homogeneity
criteria were equally weighted and where the canny edge detec-
tor, as described in [42, ch. 4.2.1], was applied. Comparisons
were also made running the same input feature stacks on a
pixel-based classification approach based on RFs, as described
above.

5) Superpixel Segmentation and k-Nearest Neighbors (kNN)-
Based Labeling Classification (SPKnnLab): This classification
approach is represented by an unsupervised segmentation pro-
cedure followed by distance-based labeling. In the first stage,
an unsupervised image segmentation is performed using image
features calculated from original interferometric SAR coher-
ence stacks. The VV and VH interferometric coherence scenes
were combined together as a single stack to provide an input
to the principal component analysis (PCA) procedure. Image
features were normalized using the histogram equalization ap-
proach [43]. Three primary principal components were used as
image features in a superpixel segmentation implemented using
a simple linear iterative clustering (SLIC) approach [44]. In the
second stage, delineated homogeneous areas were labeled. We
used a limited yet representative sample of reference/training
data systematically sampled over the training areas. While
few superpixels could be labeled directly using this sample
of reference data, to label other superpixels, we adopted the
kNN classification approach, described in, e.g., [45]. Euclidean
distance in the normalized space of image features was used
to calculate distances between neighbors in the KNN approach.
The most suitable value of £ = 25 was decided by analyzing the
classification performance on the training dataset.

6) Expert Knowledge Decision Tree Classification (EKDT):
The methodology is based on the set of various average coher-
ence images generated from the original coherence matrix. The
main idea behind using averaged images by selecting the highest
coherence data was to remove as much as possible the effects
of the decrease in coherence associated with weather conditions
(rain, snow) and changes in soil and vegetation moisture. How-
ever, the use of averaged data reduces the noise present in the
coherence images. As a good compromise, averaging ten images
under relatively dry conditions and not affected by moisture
changes provides a significant noise reduction. Considering
smaller subsets for averaging, e.g., four images, enables us
to better track the agricultural areas. First, the averages were
generated from all coherence images of each coherence interval
(12, 24, 36 days, etc.) separately for VV and VH polarizations.
In the next step, for 12- and 24-day coherence intervals, four
and ten images with the highest coherence from summer and
winter seasons are selected and averages are generated. Winter
and summer averaged images selected as agricultural area were
covered either by bare soil (high coherence) or vegetation (low
coherence) during these two seasons, respectively. During the
spring and autumn, we can expect to have a mixture of both.
The methodology is prepared based on the expert knowledge
of the behavior of the coherence during each season on the
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TABLE I
SUMMARY OF METHODOLOGIES DURING THE RR CONSULTATION AND MAIN FEATURES

Methodology | Space object [ Decision type | Baselines [ Pol. channels | Intensity
RF Pixel RF ML classifier short VV & VH YES
EigCoh Pixel RF ML classifier full mat. VV & VH YES
TDI Pixel RF ML classifier | short & long | VV & VH YES
KTH-SEG Object SVM classifier short & long | VV & VH YES
SPSegKnnLab Object kNN ML classifier full mat. VV & VH NO
EKDT Object Decision Tree short VV & VH NO
DARB Object Decision Threshold | reduced set VV & VH NO

Short-shortest temporal baselines, long-long temporal baselines full mat.-full multitemporal coherence matrix.

West Wielkopolska (Poland) site. The same set of coherence
averages are selected for the classification on the other test
sites—Dofana (Spain) and Merano, South Tyrol (Italy). The
decision tree method [46] is selected for classification as it
is expected that various input images will be the best for the
classification of particular land cover classes. The different trees
have been built for particular test sites to obtain the best possible
results.

7) Data Adaptive Rule-Based Classification (DARB):
DARB is a data-adaptive technique as the thresholds for clas-
sification depend on the histograms of the image and, hence,
on a data-dependent approach. From the total amount of inter-
ferometric products, ten coherence pairs from each site were
chosen for this analysis, five with shorter temporal baselines,
and five with longer baselines. The coherence ranges in images
with shorter baselines was overall higher than those with longer
baselines. The coherence values exhibited by the land cover
classes of forest, agriculture, water, and wetlands were also
observed to be more distinguishable in coherence images made
by images with shorter temporal baselines. The VV and VH
coherence pairs were downloaded and analyzed separately. The
histogram of the image is first analyzed to check whether the
image histogram is monomodal or bimodal and Gaussian curves
were fit accordingly. The original coherence values were not
changed and, hence, no extra uncertainties were induced by this
process. In cases where the histogram was homogeneous and
could be fitted with a single Gaussian curve, the peak of the
histogram (mean; ¢g) represented the coherence value of the
most dominant land cover class. In our dataset of 30 images
(ten for each site), images with heterogeneous distributions or
with bimodal histograms were fit with two Gaussian curves.
The coherence values corresponding to the peaks of the two
simulated curves (¢; and t5) along with the mean coherence
values (tp) were used as thresholds to divide the image into
four classes. For images with monomodal histograms, the value
of ty (mean) is known. However, to extract ¢; and t5, two
Gaussian curves were simulated for these data as well. Once
the thresholds for image classification were extracted, the image
was segmented into different clusters using the agglomerative
clustering technique [33] with the number of clusters set to
80. Once segmentation was complete, the mean coherence in
each segment was considered and the segments were assigned
classes based on the previously extracted thresholds (%¢, 1, and
to; see equations below). The thresholds used for classification

in the DARB method are given as follows, with the classes
representing the corresponding CORINE land cover (CLC) level
3 class numbers:

v <ty =100
to > v >ty =200
t >~ > to = 300

t1 > v = 400.

Most of the strategies are able to incorporate information from
the different polarimetric channels simultaneously or indepen-
dently during the classification. Moreover, the temporal series
of image intensities can also be included in the classification
stage. These possibilities are essential to test and analyze the
impact of the different features. As a summary, Table I provides
a comparable overview of the main features involving all the
evaluated methodologies.

D. Test Sites and Datasets

Three different locations have been selected for the RR ex-
perience. The site selection process considered overlapping the
different cover types but in alternative geographical locations
and under different circumstances, so the overall conclusions of
the analysis are expected to be much less site dependent. A brief
description of each site is provided in this section.

e Site 1: Dofiana (Spain). A specific test site for agriculture,
wetlands, and related land covers close to Seville in the SW
of Spain. The pilot area is centred at 37°08’N, 06°07’E.
At the southeast of the rice fields, there is a wide area of
different crops, including wheat, cotton, barley, corn, peas,
sugar beet, lentils, potatoes, etc.

o Site 2: Merano, South Tyrol (Italy). South Tyrol is an
autonomous province in northern Italy located in the center
of the Alps with steep elevation gradients stretching from
190-3890 m a.s.l. The area is very dynamic in terms of
temporal and spatial variability of land cover. Overall, 44%
or 3228 km? of the South Tyrol region is covered by forest.
The pilot area is centred at 46°40°N, 11°09’E. The area
around Merano was chosen due to its large variability of
land cover, ranging from urban areas in the valley floor to
glacier areas above 3000 m a.s.1.

o Site 3: West Wielkopolska (Poland). The study area in
Poland is located in the west part of Poland within a region
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Fig.4. RGB optical images over the regions of interest in: (a) Dofiana (Spain), 2016-07-16; (b) Merano, South Tyrol (Italy), 2016-08-07; and (c) West Wielkopolska
(Poland), 2016-09-13. Illustration of the ground truth reference data in the CLC level 3 for the correspondent site in (d) UTM Zone 30 N, (e) UTM Zone 32 N, and

(f) UTM Zone 33 N.

with well developed agriculture, dominated by intensively
used large fields with areas above 10 ha. The dominating
crops are wheat, rye, triticale, barley, oats, rape, corn,
and sugar beet. This site is also occupied by alfalfa and
grasslands. The pilot area, centred at 52°14’N, 16°48’E,
contains three sites representing different land cover types
mainly composed of agriculture, forest, and urban areas.
For eachlocation, an area of interest (AOI) of 20 x 20 km is se-
lected where land cover ground truth information is available in
the CLC level 3 nomenclature. The total number of classes varies
per site, and it goes from 15 for Dofiana, 15 for Merano, South
Tyrol, and nine for the West Wielkopolska site. The zero class
was also considered in this number, providing a representation
for the samples outside of the original definition of the ground
truth data in the case of the Dofiana area and a representation
of areas affected by strong a layover and foreshortening due
to the topography present in the case of the South Tyrol study

area. This class also helps the classification methods to provide
samples beyond the original definition. As a visual reference, an
optical overview of the locations and the overlaid ground truth
is illustrated in Fig. 4.

Following the steps described in Section II-B, the AOI of
each site is processed to generate the multitemporal coherence
data considering the stable available S-1 SLC IW acquisition
mode. The period of time and the amount of preprocessed
data considered per site are summarized in Table II. It must
be remarked that the operational ramp-up acquisition phase for
the Sentinel-1 provided a different starting acquisition date for
each considered date. In the case of the South Tyrol site, it was
detected that additional modes, as stripmap, and polarizations
(transmission of the horizontal polarized signal) were acquired,
instead of the inland by default IW swath, vertical polarization
transmission. This is the reason why the stack in this case shows
fewer images than the other two.
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TABLE II
SUMMARY OF THE DATASET STRUCTURE: RELATIVE ORBIT NUMBER (RON), ORBITAL PASS IN ASCENDING (ASC) OR DESCENDING (DSC) MODES, PERIOD OF
OBSERVATION BETWEEN INITIAL AND FINAL DATES AND THE NUMBER OF ACQUISITIONS (SLC) INVOLVED AND INTERFEROGRAMS GENERATED AT EACH SITE

Site location

|| RON [ Orbit pass | Initial date | Final date [ No. SLC | No. interferograms

Donana 154 DSC 20150309 20161228 49 1176
Merano, South Ty- 117 ASC 20150330 20161225 38 703
rol

West Wielkopolska 175 ASC 20150109 20161229 55 1485

III. RESULTS

During the RR exercise, all the methodologies presented in
Section II were evaluated utilizing the three datasets described.
Some of the methodologies were tested using the interferometric
coherence and intensities alone, while, in other cases, intensities
and coherence were used simultaneously. A systematic accu-
racy assessment is performed across all the classification maps
produced in this article. The overall accuracy is the selected pa-
rameter employed to summarize and compare the performances
of each methodology and parametric combination. Although
any parameter summarizing a classification from the confusion
matrix must suffer from different sorts of inconsistencies [47],
in this case, the comparisons are performed within the same
sites, i.e., the class distribution remains equal from one method-
ology to another. This fact enables us to securely exploit the
overall accuracy (OA) as a simple and relative parameter used
to compare realizations. In Table III, a summary with all the
obtained OA is provided. The summarized results in Table III
are further discussed in Section IV. Such an analysis involved
the generation of the confusion matrix [47] per site and per
strategy. Figs. 5 and 6 provide a sample of the confusion
matrices obtained for the results at the Dofiana and Merano
sites. In Fig. 5, one can see that most classes are identified
accurately, with detection rates over 80%. In some cases, such
as agricultural and permanently irrigated land, however, one can
see confusion between those classes reaching up to 30%. In the
case of Merano in Fig. 6, the level of confusion is considerably
higher. One can see, e.g., a cluster of confusion between the bare
rocks, sparsely vegetated areas and glaciers and perpetual snow
classes, all mostly present in high altitudes and hence, affected
by considerable periods of snow cover during the annual cycle
of the seasons. In Fig. 7, results from the eigenvalue classifica-
tion at the Donana site are shown. Fig. 8 shows a comparison
between pixel-based and object-oriented classification for each
test site.

IV. DISCUSSION

In the previous two sections, a number of very different clas-
sification methodologies were described and their classification
accuracies presented. While each of those methodologies merits
their own discussion, the following discussion focuses on the
common aspects that can be derived regarding the main objec-
tives of this research, the suitability of interferometric coherence
amplitudes for land cover mapping. Those common aspects
of the classification processing chain are discussed separately
including the impact of using VV or VH polarization, or both,

working only with backscatter intensity or coherence or both,
applying pixel or object-based classification, the number of
samples used for training a machine-learning algorithm, and
how much information is needed from the coherence matrix in
order to provide reasonable results. As stated in Section II-B, the
spatial resolution space of the results is limited by the interfero-
metric coherence product. The original sensor resolution is de-
graded by the coherence estimation strategy, a box-car window
in this case, providing a larger resolution of approximately 80 m.
Thus, the minimum detectable object is defined by the product
resolution itself, which may resultin classification bias, specially
in small or boundary areas. For instance, this is clearly visible
in the crop field area in the southeast part of the Dofiana site.
Nonlocal and advanced adaptive coherence estimation strate-
gies [48]-[51] could help to preserve object definition, especially
in case of point targets and image details in which coherence is
high (i.e., wherever the coherence estimation is not biased due
to a low number of samples). This specific aspect constitutes
a future study and is left out of the present article in which
the main aim is to show how the use of coherence improves
terrain classification. Nonhomogeneous coherence estimation
strategies could help to preserve object definition but might incur
in coherence estimation bias due to the low number of samples.
Outside the scope of this analysis, a future evaluation focused
on this matter will help to provide a solid conclusion.

A. Effects on the Length of the Temporal Baseline

The impact of the temporal baselines considered from the
coherence matrix for classification has been studied in rows
7-14 of Table III. What can be seen is that the impact of
including more baselines is very limited in most cases. Only in
one study area, the one in Merano, South Tyrol, did the inclusion
of more than the shortest baseline lead to significant improve-
ments of the results. Both in Doflana and West Wielkopolska,
there was no effect visible when including more data from the
temporal domain. Also in Merano, there was no significant
improvement after the two second-shortest baselines, including
12- and 24-day temporal baselines. When looking into the mul-
titemporal signatures of various land cover types as presented in
Fig. 1, one can also clearly see that for most land cover types, the
signal gets noisier and weaker the further away from the shortest
baseline diagonal one gets.

B. Intensity Versus Coherence-Based Classification

When deciding which features to use for land cover clas-
sification based on SAR imagery, backscatter intensity is, of
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TABLE IIT
RESULTS SUMMARY FOR THE EVALUATION PERFORMED WITH THE DIFFERENT METHODOLOGIES AND FEATURES SETUP
Input Training | Space max. OA OA OA

id Method. data samples obj. Btemp Pol. DN (%) | ST (%) | WW (%)

1 Int. + Coh. 1% Pixel 12 \'A% 79.4 - -

2 Int. + Coh. 1% Pixel 12 VH 77.4 - -

3 Int. + Coh. 1% Pixel 12 VV+VH 80.2 - -

4 Int. 1% Pixel - 'A% 61.2 - -

5 Int. 1 % Pixel - VH 61.0 = =

6 Int. 1% Pixel - VV+VH 62.4 - -

7 RF Coh. 1% Pixel 12 VV+VH 74.2 65.2 70.0

8 Coh. 1% Pixel 24 VV+VH 74.4 68.9 70.0

9 Coh. 1% Pixel 36 VV+VH 74.3 68.9 70.2

10 Coh. 1% Pixel 48 VV+VH 73.6 69.0 70.1

11 Coh. 1% Pixel 60 VV+VH 73.6 69.3 70.1

12 Coh. 1% Pixel 72 VV+VH 73.3 69.5 70.0

13 Coh. 1% Pixel 84 VV+VH 72.5 69.1 70.1

14 Coh. 1% Pixel 96 VV+VH 72.9 69.4 69.9

15 Coh. 1% Pixel | Full mat. 'A% 78.2 70.9 71.0

16 Coh. 1% Pixel | Full mat. VH 74.5 68.8 67.4

17 Coh. 1% Pixel | Full mat. | VV+VH 79.8 72.5 71.7

18 Int. 1% Pixel - 'A% 74.6 54.9 64.0

19 EigCoh Int. 1% Pixel - VH 74.0 56.1 66.9

20 Int. 1% Pixel - VV+VH 77.8 58.9 69.5

21 Int. + Coh. 1% Pixel | Full mat. 'A% 81.9 72.0 73.2

22 Int. + Coh. 1% Pixel | Full mat. VH 79.8 70.9 71.7

23 Int. + Coh. 1% Pixel | Full mat. | VV+VH 83.3 73.8 75.0
[24]] TDI || Coh. [ 1% | Pixel | 12 | VW [ 81 | 723 | 733 |

25 Int. + Coh. 1% Pixel 12 VV+VH 76.8 71.7 72.6

26 Int. + Coh. | 1% | Object 12 VV4+VH | 841 77.0 77.0

27 || KTH-SEG Coh. 0.01 % | Object 12 VV+VH 74.3 56.8 54.1

28 Coh. 0.1 % | Object 12 VV+VH 79.7 65.9 71.8

29 Coh. 1% Object 12 VV+VH 85.7 69.3 77.0
30 || SPKnnLab |  Coh. [ 1% | Object | 12 | VV+VH [ 903 | 765 | 796 |
[31]] EKDT [ Coh. | 1% | Pixel | 12 [VV+VH]| 787" | 85" | 870" |
[32]] DARB || Coh. [ 1% [ Object | 12 | VV+VH [ 514 | 682 | 594 |

The features analyzed involve the classification strategy or methodology, the input data type, the number of samples used for training, the spatial objects employed, the
maximum temporal baseline (Biemp) considered, and the polarimetric channels involved. The overall accuracies (OA), in percentage, provide a recap of the performance of
each evaluation at each test site—Dofana (DN) with 15 classes, South Tyrol (ST) with 15 classes, and West Wielkopolska (WW) with nine classes. Evaluation on ST and
WW with RF and Int./Int+Coh were not performed (-) as specific evaluations outside the scope of this study were performed instead. (Note T OA produced for CLC Level 1,

i.e., five classes)

course, the most obvious choice due to its higher availability,
and the fact that it is already preprocessed and downloadable
in the Sentinel-1 L1C GRD products and readily available on
cloud computing platforms, such as Google Earth Engine or
Amazon Web Services. When looking at the results achieved
here, it becomes evident, however, that using intensity only
limits the quality of the classification outcome for land cover
mapping significantly. Comparing the results from Table III in
rows 1-6 and 15-23, coherence always performs better even
when only using the minimum baselines. The latter are also
presented in Fig. 7. Especially interesting is the fact that using
both the multitemporal coherence matrix and the multitemporal
intensity simultaneously increases the result quality by up to

7%. This behavior was visible in basically all submitted results
including the pixel and object domain.

C. Single Versus Dual Polarization Classification

Among all the results submitted to the RR evaluation, where
the different polarimetric channels were tested separately, it
became evident that they behave differently. The channel VV
is the one that offers the best classification result. This was
expected since the copolar channel VV exhibits a higher SNR
than channel VH, as also demonstrated in the class samples of
Fig. 1, where the behavior of six different land cover types is
highlighted in both polarimetric channels. However, when both
channels are processed jointly, the accuracy of the classification
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increases, as can be seen in Table III rows 1-3 and 15-17.
This is observed for both the coherence-based classification
results as well as the intensity-based classification results, or the
combination of both. In all cases, including both polarizations
into the feature space of the classifiers yielded the best results,
with improvements of 1%—5% in OA with respect to individual
usage of one polarization.

D. Selecting the Number of Training Samples

Regarding the sampling strategy, the most prominent impact
is the dependency on the number of training samples used for
the machine-learning algorithms applied later. A comparison
was made using the object-based approach of KTH-SEG with
the support vector machine as the classifier and the outcome of
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this is visible in rows 27-29 in Table III. For all the study areas,
it is clearly visible that, the more samples are used, the better
the final results are in terms of OA.

E. Effects of Segmentation in the Classification Results

Among the different approaches of image classification,
two were based on segmentation prior to classification. Both
approaches significantly improved the OA. Fig. 8 shows a
direct comparison using the KTH-SEG [7] approach and the
standard RF approach in a pixel-based manner for all the three
study areas. The improvements when applying the same input
datasets and training samples are 4%—7%. (See also Table III,
rows 25 and 26).



546 IEEE JOURNAL OF SELECTED

Zero Class 0.00

Artificial 0.20

Arable land 0.00 0.00 0.06

Vineyards 0.00 0.03 0.08

Fruit trees/berry plantations 0.00 0.15 0.23
Pastures 0.00 0.06 0.31

Heterogenous agricultural areas 0.00 0.00 0.00
Forest 0.01 0.05 0.08

Natural grasslands 0.00 0.00 0.00

predicted label

Transitional woodland-shrub 0.00 0.00 0.00
Bare rocks 0.00 0.00 0.00

Sparsely vegetated areas 0.00 0.00 0.00
Glaciers and perpetual snow 0.00 0.00 0.00

Wetlands 0.00 0.00 0.00

=]
o

2

e
[=]

Inland waters 0.00 4

Artificial

Zero Class
Arable land

TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 13, 2020

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.13 0.09 002 005 0.01 0.00 0.01 0.00 0.00 0.00 0.09 0.18
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.01 0.04
0.04 0.01 0.00 0.01 0.00 0.00 0.00 0.01 0.17
0.04 0.05 0.01 0.01 000 0.00 0.00 0.00 0.05
0.00 0.00 0.00 0.16 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.10 0.04 0.22 0.21

0.00 0.00 0.01 0.30 0.09

0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.02

0.00 0.00 0.00 0.00 0.00 0.09 0.03 0O.18 0.03 0.01
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 |!,?§’.%~ 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.09 0.00

0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.11 0.22
[ w %] 1] wn w w
4 € § 8 B 5 5§ £ 8 3 d L
— o) { ey @ 4] = = o 4] c @
c 5 = L @ £ ©o0 = £ T =
> ‘E,‘ ) [1+] [=] - 0 e (1] w —= ©
@ frint %] o (18 w | @ s = =
© w o © [1+] 1]
c < o P © £ § @ S = T
s © = = S T o O E
o bud o — [aa] o Q o
S — O T o =
> 1] o [ =
- A = 0o o w -
e P = [ o
@ o o = >
2 ® 5 - T
W " = © 2 e
Q S = @ ©
o o 2 9w
[ ™9 ] -
e = —_ (1] a
e} 4] w {= 1 i
5 o g [
= o o o
e @ = &)
B
]
sk
true label

Fig. 6. Confusion matrix of best KTH-SEG result for Merano, South Tyrol, Italy. All values are given as a ratio between the number of pixels of predicted class

and reference class.

FE Summary

The analysis performed in this article proved that key features
and parameters exist that have a direct impact on the classifica-
tion performance. The following list provides a summary of the
insights detected and presented in this section.

1) Temporal Baseline: Results show that there is very limited
improvement when more than the shortest baselines are consid-
ered. However, the seasonal effects, visible in the multitemporal
coherence matrix in Fig. 1, suggest that there is some land
cover information in larger baselines. Further analysis, including
six-day baselines from S-1 A/B configuration, must provide
more light in this regard.

2) Image Intensity and Interferometric Coherence: In this
article, it has been shown that the coherence provides better

results than the image intensities systematically in all evalu-
ated cases. This is a remarkable fact that proves and might
justify, depending on the application and the final requirements,
the computation expense of the interferometric generation.
It has also been detected that both features are complemen-
tary, improving results’ accuracy in all cases when both are
combined.

3) Polarization: A different sensitivity of both polarimet-
ric channels has been observed. The VV component al-
ways provides better results than the VH counter part. The
combination of both channels proves to be complementary. The
S-1 polarimetric capabilities prevent an in-depth analysis in this
direction.

4) Sampling: It has been shown how the number of samples
influences the classification performances. This is a well known
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strategy. In the horizontal direction, the effects of the polarization can be observed while in the vertical direction the effects of considering the coherence, intensity,

or both simultaneously are represented [for reference, see Fig. 4(a) and (d)].

characteristic in the classification domain, which also controls
the capabilities of the methodology to generalize. Reasonably
high accuracies are obtained with 1% of the total number
of samples considering one or two campaigns. However, the
generalization capabilities along the temporal dimension, i.e.,
extending the classification along the 2017 and 2018 campaigns,
must still be analyzed in detail.

5) Segmentation: In general, object-based results show
higher OA than the equivalent pixel-based maps. Although the
maps produced using segmented coherences produce results

(both qualitatively and quantitatively) closer to the ground truth,
it can be seen that a finer detail is preserved in all pixel-based
maps. This again stresses the importance of the definition and
nature of the ground truth reference data used within the classi-
fication methodology.

V. CONCLUSION

In this article, the value of Sentinel-1 interferometric coher-
ence for land cover mapping was analyzed and demonstrated.
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i Disc. urban fabric
Green urban areas
Sport/Leisure facilities
Non-irrigated arable land
Bm Broad-leaved forest
N Coniferous forest
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Inland marshes
B Marine waters
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Fig. 8. Comparison of pixel-based and object-based classification results based on the object-based image classification (KTH-SEG). Row 1: Pixel-based results
from left: Dofiana (15 classes), middle: Merano (15 classes), right: West-Wielkopolska (9 classes). Row 2: Object-based results from left: Dofiana (15 classes),
middle: Merano (15 classes), right: West-Wielkopolska (9 classes). The zero class indicates layover and foreshortening effects due to the side-looking geometry in

a strong topography.

A plethora of different classification strategies were applied,
maintaining comparability by giving all participating research
groups access to exactly the same set of analysis-ready input
data. First and foremost, the results of this study indicate that the
interferometric coherence provided in multitemporal matrices is
a formidable source of information for land cover mapping, as
has been proven by the fact that three different methodologies,
developed by three different research groups, produced an OA of
over 75% for all three study areas. It should be highlighted that
in all study areas, nine or more classes were present, covering
almost every class from the CORINE classification scheme.
Further, the authors looked into the impact of different features
and processing steps. Coherence is shown to perform better than
intensity in all the evaluated scenarios, although this analysis
shows that it is important and beneficial to include both intensity

and coherence as both observables are complementary. A similar
consequence is also deducted for the polarimetric channels,
although V'V systematically provides better accuracies. Further,
it is enough to work with only a limited number of multitem-
poral baselines and for all machine-learning approaches, the
number of training samples provided has the biggest impact.
Finally, object-based approaches performed significantly better
than pixel-based approaches in terms of thematic accuracy, but
tended to lose some geometric detail. Future analysis will now
focus on performing classifications over larger areas in order to
study the general applicability of the interferometric coherence
for land cover mapping further. Also, the impact of the now
readily available six-day coherence for the years 2017 and 2018
will certainly further improve the capability of this SAR-derived
feature for classification purposes, especially in the vegetation
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domain, where higher temporal variability can be expected.
In addition, the comparison between SAR- and optical-based
land cover products and a data assimilation framework to ex-
ploit both domains simultaneously will be evaluated in future
studies. Finally, this study has confirmed the capabilities of
the interferometric coherence for land cover classification. The
common concerns with using interferometric products from an
operational standpoint are usually related to the computational
requirements when compared to SLC images or optical products.
In the RR experience, the provision of analysis-ready data easily
resolved the main drawback providing a relevant feature into
the classification scheme. Although a deeper evaluation on the
computational cost must be addressed, from the classification
perspective, the necessity of a ready-to-use coherence feature
has been clearly revealed.
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